Dada la cantidad de dígitos n en un número, imprime todos los números de n dígitos cuyos dígitos son estrictamente crecientes de izquierda a derecha.
Ejemplos:
Input: n = 2 Output: 01 02 03 04 05 06 07 08 09 12 13 14 15 16 17 18 19 23 24 25 26 27 28 29 34 35 36 37 38 39 45 46 47 48 49 56 57 58 59 67 68 69 78 79 89 Input: n = 3 Output: 012 013 014 015 016 017 018 019 023 024 025 026 027 028 029 034 035 036 037 038 039 045 046 047 048 049 056 057 058 059 067 068 069 078 079 089 123 124 125 126 127 128 129 134 135 136 137 138 139 145 146 147 148 149 156 157 158 159 167 168 169 178 179 189 234 235 236 237 238 239 245 246 247 248 249 256 257 258 259 267 268 269 278 279 289 345 346 347 348 349 356 357 358 359 367 368 369 378 379 389 456 457 458 459 467 468 469 478 479 489 567 568 569 578 579 589 678 679 689 789 Input: n = 1 Output: 0 1 2 3 4 5 6 7 8 9
La idea es usar la recursividad. Comenzamos desde la posición más a la izquierda de un posible número de N dígitos y lo completamos con un conjunto de todos los dígitos mayores que su dígito anterior. es decir, llenar la posición actual con dígitos (i a 9] donde i es su dígito anterior. Después de llenar la posición actual, recurrimos a la siguiente posición con números estrictamente crecientes.
A continuación se muestra la implementación de la idea anterior:
C++
// C++ program to print all n-digit numbers whose digits // are strictly increasing from left to right #include <bits/stdc++.h> using namespace std; // Function to print all n-digit numbers whose digits // are strictly increasing from left to right. // out --> Stores current output number as string // start --> Current starting digit to be considered void findStrictlyIncreasingNum(int start, string out, int n) { // If number becomes N-digit, print it if (n == 0) { cout << out << " "; return; } // start from (prev digit + 1) till 9 for (int i = start; i <= 9; i++) { // append current digit to number string str = out + to_string(i); // recurse for next digit findStrictlyIncreasingNum(i + 1, str, n - 1); } } // Driver code int main() { int n = 3; findStrictlyIncreasingNum(0, "", n); return 0; }
Java
// Java program to print all n-digit numbers whose digits // are strictly increasing from left to right import java.io.*; class Increasing { // Function to print all n-digit numbers whose digits // are strictly increasing from left to right. // out --> Stores current output number as string // start --> Current starting digit to be considered void findStrictlyIncreasingNum(int start, String out, int n) { // If number becomes N-digit, print it if (n == 0) { System.out.print(out + " "); return; } // start from (prev digit + 1) till 9 for (int i = start; i <= 9; i++) { // append current digit to number String str = out + Integer.toString(i); // recurse for next digit findStrictlyIncreasingNum(i + 1, str, n - 1); } } // Driver code for above function public static void main(String args[])throws IOException { Increasing obj = new Increasing(); int n = 3; obj.findStrictlyIncreasingNum(0, " ", n); } }
Python3
# Python3 program to print all n-digit numbers # whose digits are strictly increasing # from left to right # Function to print all n-digit numbers # whose digits are strictly increasing # from left to right. # out --> Stores current output # number as string # start --> Current starting digit # to be considered def findStrictlyIncreasingNum(start, out, n): # If number becomes N-digit, print if (n == 0): print(out, end = " ") return # start from (prev digit + 1) till 9 for i in range(start, 10): # append current digit to number str1 = out + str(i) # recurse for next digit findStrictlyIncreasingNum(i + 1, str1, n - 1) # Driver code n = 3 findStrictlyIncreasingNum(0, "", n) # This code is contributed by Mohit Kumar
C#
// C# program to print all n-digit numbers // whose digits are strictly increasing // from left to right using System; class GFG { // Function to print all n-digit numbers // whose digits are strictly increasing // from left to right. out --> Stores // current output number as string // start --> Current starting digit to // be considered static void findStrictlyIncreasingNum(int start, string Out, int n) { // If number becomes N-digit, print it if (n == 0) { Console.Write(Out + " "); return; } // start from (prev digit + 1) till 9 for (int i = start; i <= 9; i++) { // append current digit to number string str = Out + Convert.ToInt32(i); // recurse for next digit findStrictlyIncreasingNum(i + 1, str, n - 1); } } // Driver code for above function public static void Main() { int n = 3; findStrictlyIncreasingNum(0, " ", n); } } // This code is contributed by Sam007.
Javascript
<script> // Javascript program to print all // n-digit numbers whose digits // are strictly increasing from // left to right // Function to print all // n-digit numbers whose digits // are strictly increasing // from left to right. // out --> Stores current // output number as string // start --> Current starting // digit to be considered function findStrictlyIncreasingNum(start,out,n) { // If number becomes N-digit, print it if (n == 0) { document.write(out + " "); return; } // start from (prev digit + 1) till 9 for (let i = start; i <= 9; i++) { // append current digit to number let str = out + i.toString(); // recurse for next digit findStrictlyIncreasingNum(i + 1, str, n - 1); } } // Driver code for above function let n = 3; findStrictlyIncreasingNum(0, " ", n); // This code is contributed by unknown2108 </script>
Producción:
012 013 014 015 016 017 018 019 023 024 025 026 027 028 029 034 035 036 037 038 039 045 046 047 048 049 056 057 058 059 067 068 069 078 079 089 123 124 125 126 127 128 129 134 135 136 137 138 139 145 146 147 148 149 156 157 158 159 167 168 169 178 179 189 234 235 236 237 238 239 245 246 247 248 249 256 257 258 259 267 268 269 278 279 289 345 346 347 348 349 356 357 358 359 367 368 369 378 379 389 456 457 458 459 467 468 469 478 479 489 567 568 569 578 579 589 678 679 689 789
Complejidad de Tiempo: O(N!)
Espacio Auxiliar: O(N)
Ejercicio: Imprime todos los números de n dígitos cuyos dígitos son estrictamente decrecientes de izquierda a derecha.
Este artículo es una contribución de Aditya Goel . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA