Índice mínimo para dividir la array en subarreglos con productos coprimos

Dado un arreglo arr[] que consta de N enteros, la tarea es encontrar el índice máximo K tal que el producto de los subarreglos {arr[0], arr[K]} y {arr[K + 1], arr[N – 1]} son coprimos . Si no existe tal índice, imprima “-1” .

Ejemplos:

Entrada: arr[] = {2, 3, 4, 5}
Salida: 2
Explicación:
El índice más pequeño para la partición es 2.
El producto del subarreglo izquierdo es = 2 * 3 * 4 = 24.
El producto del subarreglo derecho = 5.
Desde 24 y 5 son coprimos, la respuesta requerida es 2.

Entrada: arr[] = {23, 41, 52, 83, 7, 13}
Salida: 0
Explicación:
el índice más pequeño para la partición es 0.
Producto del subarreglo izquierdo = 23.
Producto del subarreglo derecho = 41 * 52 * 83 * 7 * 13 = 16102996.
Dado que 23 y 16102996 son coprimos, la respuesta es 0.

Enfoque ingenuo: el enfoque más simple es verificar todos los índices posibles de partición desde el inicio de la array y verificar si el producto de los subarreglos formados es coprimo o no. Si existe tal índice, imprima ese índice. De lo contrario, imprima “-1”
Complejidad de Tiempo: O(N 2 )
Espacio Auxiliar: O(1)

Enfoque eficiente: para optimizar el enfoque anterior, la idea es utilizar la array de productos de prefijos y la array de productos de sufijos y encontrar el índice posible. Siga los pasos a continuación para resolver el problema:

  • Cree dos arrays auxiliares, prefijo[] y sufijo[] para almacenar el producto de array de prefijo y sufijo. Inicialice el prefijo[0] en arr[0] y el sufijo[N – 1] en  arr[N – 1] .
  • Recorra la array dada sobre el rango [2, N] usando la variable i y actualice la array de prefijos como prefix[i] = prefix[i – 1]*arr[i] .
  • Recorra la array dada desde atrás sobre el rango [N – 2, 0] usando la variable i y actualice la array de sufijos como sufijo[i] = sufijo[i + 1]*arr[i] .
  • Itere un ciclo sobre el rango [0, N – 1] usando la variable i y verifique si el prefijo [i] y el sufijo [i + 1] son ​​coprimos o no . Si se determina que es cierto, imprime el índice actual y sale del bucle .
  • Si no existe tal índice en el paso anterior, imprima «-1» .

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the GCD of 2 numbers
int GCD(int a, int b)
{
    // Base Case
    if (b == 0)
        return a;
 
    // Find the GCD recursively
    return GCD(b, a % b);
}
 
// Function to find the minimum partition
// index K s.t. product of both subarrays
// around that partition are co-prime
int findPartition(int nums[], int N)
{
 
    // Stores the prefix and suffix
    // array product
    int prefix[N], suffix[N], i, k;
 
    prefix[0] = nums[0];
 
    // Update the prefix array
    for (i = 1; i < N; i++) {
        prefix[i] = prefix[i - 1]
                    * nums[i];
    }
 
    suffix[N - 1] = nums[N - 1];
 
    // Update the suffix array
    for (i = N - 2; i >= 0; i--) {
        suffix[i] = suffix[i + 1]
                    * nums[i];
    }
 
    // Iterate the given array
    for (k = 0; k < N - 1; k++) {
        // Check if prefix[k] and
        // suffix[k+1] are co-prime
        if (GCD(prefix[k],
                suffix[k + 1])
            == 1) {
            return k;
        }
    }
 
    // If no index for partition
    // exists, then return -1
    return -1;
}
 
// Driver Code
int main()
{
 
    int arr[] = { 2, 3, 4, 5 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    cout << findPartition(arr, N);
 
    return 0;
}

Java

// Java program for the
// above approach
import java.util.*;
class solution{
    
// Function to find the
// GCD of 2 numbers
static int GCD(int a,
               int b)
{
  // Base Case
  if (b == 0)
    return a;
 
  // Find the GCD
  // recursively
  return GCD(b, a % b);
}
 
// Function to find the minimum
// partition index K s.t. product
// of both subarrays around that
// partition are co-prime
static int findPartition(int nums[],
                         int N)
{
  // Stores the prefix and
  // suffix array product
  int []prefix = new int[N];
  int []suffix = new int[N];
  int i, k;
 
  prefix[0] = nums[0];
 
  // Update the prefix array
  for (i = 1; i < N; i++)
  {
    prefix[i] = prefix[i - 1] *
                nums[i];
  }
 
  suffix[N - 1] = nums[N - 1];
 
  // Update the suffix array
  for (i = N - 2; i >= 0; i--)
  {
    suffix[i] = suffix[i + 1] *
                nums[i];
  }
 
  // Iterate the given array
  for (k = 0; k < N - 1; k++)
  {
    // Check if prefix[k] and
    // suffix[k+1] are co-prime
    if (GCD(prefix[k],
            suffix[k + 1]) == 1)
    {
      return k;
    }
  }
 
  // If no index for partition
  // exists, then return -1
  return -1;
}
 
// Driver Code
public static void main(String args[])
{
  int arr[] = {2, 3, 4, 5};
  int N = arr.length;
 
  // Function call
  System.out.println(findPartition(arr, N));
}
}
 
// This code is contributed by SURENDRA_GANGWAR

Python3

# Python3 program for the
# above approach
 
# Function to find the
# GCD of 2 numbers
def GCD(a, b):
   
    # Base Case
    if (b == 0):
        return a
 
    # Find the GCD recursively
    return GCD(b, a % b)
 
# Function to find the minimum
# partition index K s.t. product
# of both subarrays around that
# partition are co-prime
def findPartition(nums, N):
 
    #Stores the prefix and
    # suffix array product
    prefix=[0] * N
    suffix=[0] * N
 
    prefix[0] = nums[0]
 
    # Update the prefix
    # array
    for i in range(1, N):
        prefix[i] = (prefix[i - 1] *
                     nums[i])
 
    suffix[N - 1] = nums[N - 1]
 
    # Update the suffix array
    for i in range(N - 2, -1, -1):
        suffix[i] = (suffix[i + 1] *
                     nums[i])
 
    # Iterate the given array
    for k in range(N - 1):
       
        # Check if prefix[k] and
        # suffix[k+1] are co-prime
        if (GCD(prefix[k],
                suffix[k + 1]) == 1):
            return k
 
    # If no index for partition
    # exists, then return -1
    return -1
 
# Driver Code
if __name__ == '__main__':
   
    arr = [2, 3, 4, 5]
    N = len(arr)
 
    # Function call
    print(findPartition(arr, N))
 
# This code is contributed by Mohit Kumar 29

C#

// C# program for the
// above approach
using System;
class GFG{
     
// Function to find the
// GCD of 2 numbers
static int GCD(int a, int b)
{
  // Base Case
  if (b == 0)
    return a;
 
  // Find the GCD
  // recursively
  return GCD(b, a % b);
}
 
// Function to find the minimum
// partition index K s.t. product
// of both subarrays around that
// partition are co-prime
static int findPartition(int[] nums,
                         int N)
{
  // Stores the prefix and
  // suffix array product
  int[] prefix = new int[N];
  int[] suffix = new int[N];
  int i, k;
 
  prefix[0] = nums[0];
 
  // Update the prefix array
  for (i = 1; i < N; i++)
  {
    prefix[i] = prefix[i - 1] *
                nums[i];
  }
 
  suffix[N - 1] = nums[N - 1];
 
  // Update the suffix array
  for (i = N - 2; i >= 0; i--)
  {
    suffix[i] = suffix[i + 1] *
                nums[i];
  }
 
  // Iterate the given array
  for (k = 0; k < N - 1; k++)
  {
    // Check if prefix[k] and
    // suffix[k+1] are co-prime
    if (GCD(prefix[k],
            suffix[k + 1]) == 1)
    {
      return k;
    }
  }
 
  // If no index for partition
  // exists, then return -1
  return -1;
}
 
// Driver code
static void Main()
{
  int[] arr = {2, 3, 4, 5};
  int N = arr.Length;
 
  // Function call
  Console.WriteLine(findPartition(arr, N));
}
}
 
// This code is contributed by divyeshrabadiya07

Javascript

<script>
 
// JavaScript program for the above approach
 
// Function to find the GCD of 2 numbers
function GCD(a, b)
{
    // Base Case
    if (b == 0)
        return a;
 
    // Find the GCD recursively
    return GCD(b, a % b);
}
 
// Function to find the minimum partition
// index K s.t. product of both subarrays
// around that partition are co-prime
function findPartition(nums, N)
{
 
    // Stores the prefix and suffix
    // array product
    var prefix = Array(N), suffix = Array(N), i, k;
 
    prefix[0] = nums[0];
 
    // Update the prefix array
    for (i = 1; i < N; i++) {
        prefix[i] = prefix[i - 1]
                    * nums[i];
    }
 
    suffix[N - 1] = nums[N - 1];
 
    // Update the suffix array
    for (i = N - 2; i >= 0; i--) {
        suffix[i] = suffix[i + 1]
                    * nums[i];
    }
 
    // Iterate the given array
    for (k = 0; k < N - 1; k++) {
        // Check if prefix[k] and
        // suffix[k+1] are co-prime
        if (GCD(prefix[k],
                suffix[k + 1])
            == 1) {
            return k;
        }
    }
 
    // If no index for partition
    // exists, then return -1
    return -1;
}
 
// Driver Code
var arr = [2, 3, 4, 5];
var N = arr.length;
// Function call
document.write( findPartition(arr, N));
 
</script>
Producción: 

2

 

Complejidad de tiempo: O(N log(N))
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por ManikantaBandla y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *