La array con GCD de cualquiera de sus subconjuntos pertenece a la array dada

Dado un conjunto de N elementos tales que N \in [1, 1000]   , la tarea es generar una array tal que el GCD de cualquier subconjunto de la array generada se encuentre en el conjunto de elementos dado. La array generada no debe tener más del triple de la longitud del conjunto del GCD
Requisito previo: GCD de una array | Subconjunto de 
ejemplos de arrays: 
 

Input : 3
        1 2 7
Output :  1 1 2 1 7

Input : 4
        2 4 6 12
Output : 2 2 4 2 6 2 12


Input : 5
        2 5 6 7 11
Output : No array can be build

Explicación: 
calcule el GCD de una array o, en este caso, un conjunto. Ahora, primero ordene el conjunto dado de GCD. Si el MCD de este conjunto es igual al número mínimo del conjunto dado, simplemente colocando este MCD entre cada número. Pero, si este GCD no es el elemento mínimo del conjunto dado, desafortunadamente «no se puede construir una array». 
 

C++

// C++ implementation to generate the
// required array
#include <bits/stdc++.h>
using namespace std;
 
// Function to return gcd of a and b
int gcd(int a, int b)
{
    if (a == 0)
       return b;      
    return gcd(b % a, a);
}
 
// Function to find gcd of
// array of numbers
int findGCD(vector<int> arr, int n)
{
    int result = arr[0];   
    for (int i = 1; i < n; i++)
        result = gcd(arr[i], result);
    return result;
}
 
// Function to generate the array
// with required constraints.
void compute(vector<int> arr, int n)
{
    vector<int> answer;
     
    // computing GCD of the given set
    int GCD_of_array = findGCD(arr, n);
 
    // Solution exists if GCD of array is equal
    // to the minimum element of the array
    if(GCD_of_array == arr[0])
    {
        answer.push_back(arr[0]);
        for(int i = 1; i < n; i++)
        {
            answer.push_back(arr[0]);
            answer.push_back(arr[i]);
        }
     
        // Printing the built array
        for (int i = 0; i < answer.size(); i++)
            cout << answer[i] << " ";
    }
    else
        cout << "No array can be build";
}
 
// Driver function
int main()
{
 
    // Taking in the input and initializing
    // the set STL set in cpp has a property
    // that it maintains the elements in
    // sorted order, thus we do not need
    // to sort them externally
    int n = 3;
    int input[]= {2, 5, 6, 7, 11};
    set<int> GCD(input, input + n);
    vector<int> arr;
    set<int>::iterator it;
     
    for(it = GCD.begin(); it!= GCD.end(); ++it)
        arr.push_back(*it);
 
    // Calling the computing function.
    compute(arr,n);
     
    return 0;
}

Java

// Java implementation
// to generate the
// required array
import java.io.*;
import java.util.*;
 
class GFG
{
// Function to return
// gcd of a and b
static int gcd(int a,
               int b)
{
    if (a == 0)
    return b;    
    return gcd(b % a, a);
}
 
// Function to find gcd
// of array of numbers
public static int findGCD(ArrayList<Integer>
                                 arr, int n)
{
    int result = arr.get(0);
    for (int i = 1; i < n; i++)
        result = gcd(arr.get(i),
                    result);
    return result;
}
 
// Function to generate
// the array with required
// constraints.
public static void compute(ArrayList<Integer>
                                  arr, int n)
{
    ArrayList<Integer> answer =
                    new ArrayList<Integer>();
     
    // computing GCD of
    // the given set
    int GCD_of_array = findGCD(arr, n);
 
    // Solution exists if GCD
    // of array is equal to the
    // minimum element of the array
    if(GCD_of_array == arr.get(0))
    {
        answer.add(arr.get(0));
        for(int i = 1; i < n; i++)
        {
            answer.add(arr.get(0));
            answer.add(arr.get(i));
        }
     
        // Printing the
        // built array
        for (int i = 0;
                 i < answer.size(); i++)
            System.out.print(answer.get(i) + " ");
    }
    else
        System.out.print("No array " +
                      "can be build");
}
 
// Driver Code
public static void main(String args[])
{
 
    // Taking in the input and
    // initializing the set STL
    // set in cpp has a property
    // that it maintains the
    // elements in sorted order,
    // thus we do not need to
    // sort them externally
    int n = 3;
    Integer input[]= {2, 5, 6, 7, 11};
    HashSet<Integer> GCD = new HashSet<Integer>
                        (Arrays.asList(input));
    ArrayList<Integer> arr =
                new ArrayList<Integer>();
     
    for (int v : GCD)
        arr.add(v);
 
    // Calling the
    // computing function.
    compute(arr, n);
}
}
 
// This code is contributed by
// Manish Shaw(manishshaw1)

Python3

from math import gcd
# Python 3 implementation to generate the
# required array
 
# Function to find gcd of
# array of numbers
def findGCD(arr, n):
    result = arr[0]
    for i in range(1,n):
        result = gcd(arr[i], result)
    return result
 
# Function to generate the array
# with required constraints.
def compute(arr, n):
    answer = []
     
    # computing GCD of the given set
    GCD_of_array = findGCD(arr, n)
 
    # Solution exists if GCD of array is equal
    # to the minimum element of the array
    if(GCD_of_array == arr[0]):
        answer.append(arr[0])
        for i in range(1,n):
            answer.append(arr[0])
            answer.append(arr[i])
     
        # Printing the built array
        for i in range(len(answer)):
            print(answer[i],end = " ")
 
     
    else:
        print("No array can be build")
 
# Driver function
if __name__ == '__main__':
    # Taking in the input and initializing
    # the set STL set in cpp has a property
    # that it maintains the elements in
    # sorted order, thus we do not need
    # to sort them externally
    n = 3
    input = [2, 5, 6, 7, 11]
    GCD = set()
    for i in range(len(input)):
        GCD.add(input[i])
 
    arr = []
 
    for i in GCD:
        arr.append(i)
 
    # Calling the computing function.
    compute(arr,n)
     
# This code is contributed by
# Surendra_Gangwar

C#

// C# implementation
// to generate the
// required array
using System;
using System.Collections.Generic;
 
class GFG
{
    // Function to return
    // gcd of a and b
    static int gcd(int a, int b)
    {
        if (a == 0)
        return b;    
        return gcd(b % a, a);
    }
     
    // Function to find gcd
    // of array of numbers
    static int findGCD(List<int> arr,
                               int n)
    {
        int result = arr[0];
        for (int i = 1; i < n; i++)
            result = gcd(arr[i],
                         result);
        return result;
    }
     
    // Function to generate
    // the array with required
    // constraints.
    static void compute(List<int> arr,
                                int n)
    {
        List<int> answer = new List<int>();
         
        // computing GCD of
        // the given set
        int GCD_of_array = findGCD(arr, n);
     
        // Solution exists if GCD
        // of array is equal to the
        // minimum element of the array
        if(GCD_of_array == arr[0])
        {
            answer.Add(arr[0]);
            for(int i = 1; i < n; i++)
            {
                answer.Add(arr[0]);
                answer.Add(arr[i]);
            }
         
            // Printing the
            // built array
            for (int i = 0; i < answer.Count; i++)
                Console.Write(answer[i] + " ");
        }
        else
            Console.Write("No array " +
                          "can be build");
    }
     
    // Driver Code
    static void Main()
    {
     
        // Taking in the input and
        // initializing the set STL
        // set in cpp has a property
        // that it maintains the
        // elements in sorted order,
        // thus we do not need to
        // sort them externally
        int n = 3;
        int []input= new int[]{2, 5, 6, 7, 11};
        HashSet<int> GCD = new HashSet<int>(input);
        List<int> arr = new List<int>();
         
        foreach (int b in GCD)
            arr.Add(b);
     
        // Calling the
        // computing function.
        compute(arr, n);
    }
}
 
// This code is contributed by
// Manish Shaw(manishshaw1)

Javascript

<script>
// javascript implementation
// to generate the
// required array
 
    // Function to return
    // gcd of a and b
    function gcd(a , b) {
        if (a == 0)
            return b;
        return gcd(b % a, a);
    }
 
    // Function to find gcd
    // of array of numbers
    function findGCD( arr , n) {
        var result = arr[0];
        for (i = 1; i < n; i++)
            result = gcd(arr[i], result);
        return result;
    }
 
    // Function to generate
    // the array with required
    // constraints.
    function compute(arr , n) {
        var answer = new Array();
 
        // computing GCD of
        // the given set
        var GCD_of_array = findGCD(arr, n);
 
        // Solution exists if GCD
        // of array is equal to the
        // minimum element of the array
        if (GCD_of_array == arr[0]) {
            answer.add(arr[0]);
            for (i = 1; i < n; i++) {
                answer.add(arr[0]);
                answer.add(arr[i]);
            }
 
            // Printing the
            // built array
            for (var i = 0; i < answer.length; i++)
                document.write(answer[i] + " ");
        } else
            document.write("No array " + "can be build");
    }
 
    // Driver Code
     
        // Taking in the input and
        // initializing the set STL
        // set in cpp has a property
        // that it maintains the
        // elements in sorted order,
        // thus we do not need to
        // sort them externally
        var n = 3;
        var input = [ 2, 5, 6, 7, 11 ];
         
        // Calling the
        // computing function.
        compute(input, n);
 
// This code is contributed by umadevi9616
</script>
Producción: 

No array can be build

 

Complejidad de tiempo: O (nlog (n)), donde n es el tamaño de la array dada.
Espacio Auxiliar: O(n)

Sugiera si alguien tiene una mejor solución que sea más eficiente en términos de espacio y tiempo.
Este artículo es una contribución de Aarti_Rathi . Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.

Publicación traducida automáticamente

Artículo escrito por shivani.mittal y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *