Dado un arreglo de elementos enteros, la tarea es encontrar la longitud del subarreglo más grande de tal manera que todos los elementos del subarreglo sean cuadrados perfectos.
Ejemplos:
Entrada: arr[] = {1, 7, 36, 4, 49, 2, 4}
Salida: 3
La subarray de longitud máxima con todos los elementos como cuadrados perfectos es {36, 4, 49}
Entrada: arr[] = { 25, 100, 2, 3, 9, 1}
Salida: 2
El subconjunto posible es {25, 100}
Acercarse:
- Atraviesa la array de izquierda a derecha. Inicialice una variable max_length y current_length con 0 .
- Tome un número entero y una variable flotante y para cada elemento de la array almacene su raíz cuadrada en ambas variables.
- Si ambas variables son iguales, es decir, el elemento actual es un cuadrado perfecto, incremente la variable longitud_actual y continúe. De lo contrario, establezca current_length = 0 .
- En cada paso, asigne max_length como max_length = max(current_length, max_length) .
- Imprime el valor de max_length al final.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find the length of the // largest sub-array of an array every // element of whose is a perfect square #include <bits/stdc++.h> using namespace std; // function to return the length of the // largest sub-array of an array every // element of whose is a perfect square int contiguousPerfectSquare(int arr[], int n) { int a; float b; int current_length = 0; int max_length = 0; for (int i = 0; i < n; i++) { b = sqrt(arr[i]); a = b; // if both a and b are equal then // arr[i] is a perfect square if (a == b) current_length++; else current_length = 0; max_length = max(max_length, current_length); } return max_length; } // Driver code int main() { int arr[] = { 9, 75, 4, 64, 121, 25 }; int n = sizeof(arr) / sizeof(arr[0]); cout << contiguousPerfectSquare(arr, n); return 0; }
Java
// Java program to find the length of the // largest sub-array of an array every // element of whose is a perfect square import java.io.*; class GFG { // function to return the length of the // largest sub-array of an array every // element of whose is a perfect square static int contiguousPerfectSquare(int []arr, int n) { int a; float b; int current_length = 0; int max_length = 0; for (int i = 0; i < n; i++) { b = (float)Math.sqrt(arr[i]); a = (int)b; // if both a and b are equal then // arr[i] is a perfect square if (a == b) current_length++; else current_length = 0; max_length = Math.max(max_length, current_length); } return max_length; } // Driver code public static void main (String[] args) { int arr[] = { 9, 75, 4, 64, 121, 25 }; int n = arr.length; System.out.print(contiguousPerfectSquare(arr, n)); } } // This code is contributed by inder_verma..
Python3
# Python 3 program to find the length of # the largest sub-array of an array every # element of whose is a perfect square from math import sqrt # function to return the length of the # largest sub-array of an array every # element of whose is a perfect square def contiguousPerfectSquare(arr, n): current_length = 0 max_length = 0 for i in range(0, n, 1): b = sqrt(arr[i]) a = int(b) # if both a and b are equal then # arr[i] is a perfect square if (a == b): current_length += 1 else: current_length = 0 max_length = max(max_length, current_length) return max_length # Driver code if __name__ == '__main__': arr = [9, 75, 4, 64, 121, 25] n = len(arr) print(contiguousPerfectSquare(arr, n)) # This code is contributed by # Surendra_Gangwar
C#
// C# program to find the length of the // largest sub-array of an array every // element of whose is a perfect square using System; class GFG { // function to return the length of the // largest sub-array of an array every // element of whose is a perfect square static int contiguousPerfectSquare(int []arr, int n) { int a; float b; int current_length = 0; int max_length = 0; for (int i = 0; i < n; i++) { b = (float)Math.Sqrt(arr[i]); a = (int)b; // if both a and b are equal then // arr[i] is a perfect square if (a == b) current_length++; else current_length = 0; max_length = Math.Max(max_length, current_length); } return max_length; } // Driver code public static void Main () { int []arr = { 9, 75, 4, 64, 121, 25 }; int n = arr.Length; Console.WriteLine(contiguousPerfectSquare(arr, n)); } } // This code is contributed by inder_verma..
PHP
<?php // PHP program to find the length of the // largest sub-array of an array every // element of whose is a perfect square // function to return the length of the // largest sub-array of an array every // element of whose is a perfect square function contiguousPerfectSquare($arr, $n) { $current_length = 0; $max_length = 0; for ($i = 0; $i < $n; $i++) { $b = (float)sqrt($arr[$i]); $a = (int)$b; // if both a and b are equal then // arr[i] is a perfect square if ($a == $b) $current_length = $current_length + 1; else $current_length = 0; $max_length = max($max_length, $current_length); } return $max_length; } // Driver code $arr = array(9, 75, 4, 64, 121, 25); $n = sizeof($arr); echo contiguousPerfectSquare($arr, $n); // This code os contributed // by Akanksha Rai ?>
Javascript
<script> // Javascript program to find the length of the // largest sub-array of an array every // element of whose is a perfect square // function to return the length of the // largest sub-array of an array every // element of whose is a perfect square function contiguousPerfectSquare(arr, n) { var a; var b; var current_length = 0; var max_length = 0; for (var i = 0; i < n; i++) { b = (Math.sqrt(arr[i])); a = parseInt(b); // if both a and b are equal then // arr[i] is a perfect square if (a == b) current_length++; else current_length = 0; max_length = Math.max(max_length, current_length); } return max_length; } // Driver code var arr = [9, 75, 4, 64, 121, 25 ]; var n = arr.length; document.write( contiguousPerfectSquare(arr, n)); </script>
Producción:
4
Complejidad de tiempo: O (nlogn)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por Shashank_Sharma y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA