Dado un entero positivo N , la tarea es encontrar el promedio de las cuartas potencias de los primeros N números naturales .
Ejemplos:
Entrada: N = 3
Salida: 32,6667
Explicación:
La suma de las cuartas potencias de los primeros N números naturales = 1 4 + 2 4 + 3 4 = 1 + 16 + 81 = 98.
Por tanto, la media = 98 / 3 = 32,6667 .Entrada: N = 5
Salida: 12
Enfoque ingenuo: el enfoque más simple para resolver el problema dado es encontrar la suma de las cuartas potencias de los primeros N números naturales e imprimir su valor cuando se divide por N.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the average of the // fourth power of first N natural numbers double findAverage(int N) { // Stores the sum of the fourth // powers of first N natural numbers double S = 0; // Calculate the sum of fourth power for (int i = 1; i <= N; i++) { S += i * i * i * i; } // Return the average return S / N; } // Driver Code int main() { int N = 3; cout << findAverage(N); return 0; }
Java
// Java program for the above approach class GFG{ // Function to find the average of the // fourth power of first N natural numbers static double findAverage(int N) { // Stores the sum of the fourth // powers of first N natural numbers double S = 0; // Calculate the sum of fourth power for(int i = 1; i <= N; i++) { S += i * i * i * i; } // Return the average return S / N; } // Driver code public static void main(String[] args) { int N = 3; System.out.println(findAverage(N)); } } // This code is contributed by abhinavjain194
Python3
# Python3 program for the above approach # Function to find the average of the # fourth power of first N natural numbers def findAverage(N): # Stores the sum of the fourth # powers of first N natural numbers S = 0 # Calculate the sum of fourth power for i in range(1, N + 1): S += i * i * i * i # Return the average return round(S / N, 4) # Driver Code if __name__ == '__main__': N = 3 print(findAverage(N)) # This code is contributed by mohit kumar 29
C#
// C# program for the above approach using System; class GFG{ // Function to find the average of the // fourth power of first N natural numbers static double findAverage(int N) { // Stores the sum of the fourth // powers of first N natural numbers double S = 0; // Calculate the sum of fourth power for(int i = 1; i <= N; i++) { S += i * i * i * i; } // Return the average return S / N; } // Driver Code public static void Main() { int N = 3; Console.WriteLine(findAverage(N)); } } // This code is contriobuted by sanjoy_62
Javascript
<script> // javascript program for the above approach // Function to find the average of the // fourth power of first N natural numbers function findAverage(N) { // Stores the sum of the fourth // powers of first N natural numbers var S = 0; var i; // Calculate the sum of fourth power for (i = 1; i <= N; i++) { S += i * i * i * i; } // Return the average return S / N; } // Driver Code var N = 3; document.write(findAverage(N)); </script>
32.6667
Complejidad temporal: O(N)
Espacio auxiliar: O(1)
Enfoque eficiente: el enfoque anterior también se puede optimizar al encontrar la suma de las cuartas potencias de los primeros N números naturales mediante la fórmula matemática que se proporciona a continuación y luego imprimir su valor cuando se divide por N .
La fórmula matemática es la siguiente:
=>
=>
=>
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the average of the // fourth power of first N natural numbers double findAverage(int N) { // Store the resultant average // calculated using formula double avg = ((6 * N * N * N * N) + (15 * N * N * N) + (10 * N * N) - 1) / 30.0; // Return the average return avg; } // Driver Code int main() { int N = 3; cout << findAverage(N); return 0; }
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the average of the // fourth power of first N natural numbers static double findAverage(int N) { // Store the resultant average // calculated using formula double avg = ((6 * N * N * N * N) + (15 * N * N * N) + (10 * N * N) - 1) / 30.0; // Return the average return avg; } // Driver Code public static void main(String args[]) { int N = 3; System.out.print(findAverage(N)); } } // This code is contributed by shivanisinghss2110
Python3
# Python program for the above approach # Function to find the average of the # fourth power of first N natural numbers def findAverage(N): # Store the resultant average # calculated using formula avg = ((6 * N * N * N * N) + (15 * N * N * N) + (10 * N * N) - 1) / 30 # Return the average return avg N = 3 print(round(findAverage(N),4)) # This code is contributed by avanitrachhadiya2155
C#
// C# program for the above approach using System; class GFG{ // Function to find the average of the // fourth power of first N natural numbers static double findAverage(int N) { // Store the resultant average // calculated using formula double avg = ((6 * N * N * N * N) + (15 * N * N * N) + (10 * N * N) - 1) / 30.0; // Return the average return avg; } // Driver Code public static void Main() { int N = 3; Console.WriteLine(findAverage(N)); } } // This code is contributed by ukasp
Javascript
<script> // JavaScript program for the above approach // Function to find the average of the // fourth power of first N natural numbers function findAverage( N) { // Store the resultant average // calculated using formula let avg = ((6 * N * N * N * N) + (15 * N * N * N) + (10 * N * N) - 1) / 30.0; // Return the average return avg; } // Driver Code let N = 3; document.write( findAverage(N).toFixed(4)); // This code is contributed by G.Sravan Kumar (171FA07058) </script>
32.6667
Tiempo Complejidad: O(1)
Espacio Auxiliar: O(1)