Multiplique dos números enteros sin usar multiplicación, división y operadores bit a bit, y sin bucles

Haciendo uso de la recursividad, podemos multiplicar dos enteros con las restricciones dadas. 
Para multiplicar x e y, suma recursivamente xy veces. 
 

Acercarse:

Como no podemos usar ninguno de los símbolos dados, la única forma que queda es usar la recursividad, con el hecho de que x debe sumarse a xy veces.

Caso base: cuando el número de veces que se tiene que sumar x se convierte en 0. 

Llamada recursiva: si no se cumple el caso base, agregue x al valor resultante actual y páselo a la siguiente iteración.

C++

// C++ program to Multiply two integers without
// using multiplication, division and bitwise
//  operators, and no loops
#include<iostream>
 
using namespace std;
class GFG
{
     
/* function to multiply two numbers x and y*/
public : int multiply(int x, int y)
{
    /* 0 multiplied with anything gives 0 */
    if(y == 0)
    return 0;
 
    /* Add x one by one */
    if(y > 0 )
    return (x + multiply(x, y-1));
 
    /* the case where y is negative */
    if(y < 0 )
    return -multiply(x, -y);
}
};
 
// Driver code
int main()
{
    GFG g;
    cout << endl << g.multiply(5, -11);
    getchar();
    return 0;
}
 
// This code is contributed by SoM15242

C

#include<stdio.h>
/* function to multiply two numbers x and y*/
int multiply(int x, int y)
{
   /* 0  multiplied with anything gives 0 */
   if(y == 0)
     return 0;
 
   /* Add x one by one */
   if(y > 0 )
     return (x + multiply(x, y-1));
  
  /* the case where y is negative */
   if(y < 0 )
     return -multiply(x, -y);
}
 
int main()
{
  printf("\n %d", multiply(5, -11));
  getchar();
  return 0;
}

Java

class GFG {
     
    /* function to multiply two numbers x and y*/
    static int multiply(int x, int y) {
         
        /* 0 multiplied with anything gives 0 */
        if (y == 0)
            return 0;
     
        /* Add x one by one */
        if (y > 0)
            return (x + multiply(x, y - 1));
     
        /* the case where y is negative */
        if (y < 0)
            return -multiply(x, -y);
             
        return -1;
    }
     
    // Driver code
    public static void main(String[] args) {
         
        System.out.print("\n" + multiply(5, -11));
    }
}
 
// This code is contributed by Anant Agarwal.

Python3

# Function to multiply two numbers
# x and y
def multiply(x,y):
 
    # 0 multiplied with anything
    # gives 0
    if(y == 0):
        return 0
 
    # Add x one by one
    if(y > 0 ):
        return (x + multiply(x, y - 1))
 
    # The case where y is negative
    if(y < 0 ):
        return -multiply(x, -y)
     
# Driver code
print(multiply(5, -11))
 
# This code is contributed by Anant Agarwal.

C#

// Multiply two integers without
// using multiplication, division
// and bitwise operators, and no
// loops
using System;
 
class GFG {
     
    // function to multiply two numbers
    // x and y
    static int multiply(int x, int y) {
         
        // 0 multiplied with anything gives 0
        if (y == 0)
            return 0;
     
        // Add x one by one
        if (y > 0)
            return (x + multiply(x, y - 1));
     
        // the case where y is negative
        if (y < 0)
            return -multiply(x, -y);
             
        return -1;
    }
     
    // Driver code
    public static void Main() {
         
        Console.WriteLine(multiply(5, -11));
    }
}
 
// This code is contributed by vt_m.

PHP

<?php
// function to multiply
// two numbers x and y
function multiply($x, $y)
{
/* 0 multiplied with
anything gives 0 */
if($y == 0)
    return 0;
 
/* Add x one by one */
if($y > 0 )
    return ($x + multiply($x,
                          $y - 1));
 
/* the case where
y is negative */
if($y < 0 )
    return -multiply($x, -$y);
}
 
// Driver Code
echo multiply(5, -11);
 
// This code is contributed by mits.
?>

Javascript

<script>
 
// javascript program to Multiply two integers without
// using multiplication, division and bitwise
//  operators, and no loops
  
/* function to multiply two numbers x and y*/
function multiply( x,  y)
{
    /* 0 multiplied with anything gives 0 */
    if(y == 0)
    return 0;
 
    /* Add x one by one */
    if(y > 0 )
    return (x + multiply(x, y-1));
 
    /* the case where y is negative */
    if(y < 0 )
    return -multiply(x, -y);
}
 
 
// Driver code
  
   document.write( multiply(5, -11));
 
// This code is contributed by todaysgaurav
 
</script>
Producción

-55

Complejidad de tiempo: O(y) donde y es el segundo argumento de la función multiplicar().

Espacio auxiliar: O(y) para la pila de recursión

Otro enfoque: el problema también se puede resolver usando la propiedad matemática básica

(a+b) 2 = un 2 + b 2 + 2a*b

⇒ a*b = ((a+b) 2 – a 2 – b 2 ) / 2

Para calcular el cuadrado de números, podemos usar la función de potencia en C++ y para dividir por 2 en la expresión anterior podemos escribir una función recursiva.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ program to Multiply two integers without
// using multiplication, division and bitwise
// operators, and no loops
#include<bits/stdc++.h>
using namespace std;
 
// divide a number by 2 recursively
int divideby2(int num)
{
   if(num<2)
    return 0;
   return 1 + divideby2(num-2);
}
 
int multiply(int a,int b)
{
    int whole_square=pow(a+b,2);
    int a_square=pow(a,2);
    int b_square=pow(b,2);
     
    int val= whole_square- a_square - b_square;
     
    int product;
     
    // for positive value of variable val
    if(val>=0)
    product = divideby2(val);
    // for negative value of variable val
    // we first compute the division by 2 for
    // positive val and by subtracting from
    // 0 we can make it negative
    else
    product = 0 - divideby2(abs(val));
     
    return product;
}
 
// Driver code
int main()
{
    int a=5;
    int b=-11;
    cout << multiply(a,b);
    return 0;
}
 
// This code is contributed by Pushpesh raj.

Java

// Java program to Multiply two integers without
// using multiplication, division and bitwise
// operators, and no loops
import java.util.*;
class GFG {
 
  // divide a number by 2 recursively
  static int divideby2(int num)
  {
    if (num < 2)
      return 0;
    return 1 + divideby2(num - 2);
  }
 
  static int multiply(int a, int b)
  {
    int whole_square = (int)Math.pow(a + b, 2);
    int a_square = (int)Math.pow(a, 2);
    int b_square = (int)Math.pow(b, 2);
 
    int val = whole_square - a_square - b_square;
 
    int product;
 
    // for positive value of variable val
    if (val >= 0)
      product = divideby2(val);
    // for negative value of variable val
    // we first compute the division by 2 for
    // positive val and by subtracting from
    // 0 we can make it negative
    else
      product = 0 - divideby2(Math.abs(val));
 
    return product;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int a = 5;
    int b = -11;
    System.out.println(multiply(a, b));
  }
}
 
// This code is contributed by phasing17

Python3

# Python3 program to Multiply two integers without
# using multiplication, division and bitwise
# operators, and no loops
 
# divide a number by 2 recursively
def divideby2(num):
 
    if(num < 2):
        return 0
    return 1 + divideby2(num-2)
 
def multiply(a, b):
    whole_square = (a + b) ** 2
    a_square = pow(a, 2)
    b_square = pow(b, 2)
 
    val = whole_square - a_square - b_square
 
    # for positive value of variable val
    if(val >= 0):
        product = divideby2(val)
         
    # for negative value of variable val
    # we first compute the division by 2 for
    # positive val and by subtracting from
    # 0 we can make it negative
    else:
        product = 0 - divideby2(abs(val))
 
    return product
 
# Driver code
a = 5
b = -11
print(multiply(a, b))
 
# This code is contributed by phasing17

C#

// C# program to Multiply two integers without
// using multiplication, division and bitwise
// operators, and no loops
 
using System;
 
class GFG {
 
  // divide a number by 2 recursively
  static int divideby2(int num)
  {
    if (num < 2)
      return 0;
    return 1 + divideby2(num - 2);
  }
 
  static int multiply(int a, int b)
  {
    int whole_square = (int)Math.Pow(a + b, 2);
    int a_square = (int)Math.Pow(a, 2);
    int b_square = (int)Math.Pow(b, 2);
 
    int val = whole_square - a_square - b_square;
 
    int product;
 
    // for positive value of variable val
    if (val >= 0)
      product = divideby2(val);
    // for negative value of variable val
    // we first compute the division by 2 for
    // positive val and by subtracting from
    // 0 we can make it negative
    else
      product = 0 - divideby2(Math.Abs(val));
 
    return product;
  }
 
  // Driver code
  public static void Main(string[] args)
  {
    int a = 5;
    int b = -11;
    Console.WriteLine(multiply(a, b));
  }
}
 
// This code is contributed by phasing17

Javascript

// JavaScript program to Multiply two integers without
// using multiplication, division and bitwise
// operators, and no loops
 
// divide a number by 2 recursively
function divideby2(num)
{
   if(num<2)
    return 0;
   return 1 + divideby2(num-2);
}
 
function multiply(a, b)
{
    let whole_square = Math.pow(a+b,2);
    let a_square = Math.pow(a,2);
    let b_square = Math.pow(b,2);
 
    let val = whole_square- a_square - b_square;
     
    let product;
     
    // for positive value of variable val
    if(val>=0)
    product = divideby2(val);
    // for negative value of variable val
    // we first compute the division by 2 for
    // positive val and by subtracting from
    // 0 we can make it negative
    else
    product = 0 - divideby2(Math.abs(val));
     
    return product;
}
 
// Driver code
let a = 5;
let b = -11;
console.log(multiply(a,b));
 
// This code is contributed by phasing17
Producción

-55

Campesino ruso (Multiplique dos números usando operadores bit a bit)
Escriba comentarios si encuentra que alguno de los códigos/algoritmos anteriores es incorrecto, o encuentre mejores formas de resolver el mismo problema.
 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *