Dada una array de n enteros. La tarea es encontrar el número más grande que es un cuadrado perfecto. Escribe -1 si no hay ningún número que sea cuadrado perfecto.
Ejemplos :
Input : arr[] = {16, 20, 25, 2, 3, 10} Output : 25 Explanation: 25 is the largest number that is a perfect square. Input : arr[] = {36, 64, 10, 16, 29, 25| Output : 64
Una solución simple es ordenar los elementos y ordenar los n números y comenzar a buscar desde atrás un número cuadrado perfecto usando la función sqrt(). El primer número desde el final que es un número cuadrado perfecto es nuestra respuesta. La complejidad de clasificación es O(n log n) y de la función sqrt() es log n, por lo que en el peor de los casos la complejidad es O(n log n).
Una Solución Eficiente es iterar para todos los elementos en O(n) y comparar cada vez con el elemento máximo, y almacenar el máximo de todos los cuadrados perfectos.
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP program to find the largest perfect // square number among n numbers #include<iostream> #include<math.h> using namespace std; // Function to check if a number // is perfect square number or not bool checkPerfectSquare(double n) { // takes the sqrt of the number double d = sqrt(n); // checks if it is a perfect // square number if (d * d == n) return true; return false; } // Function to find the largest perfect // square number in the array int largestPerfectSquareNumber(int a[], double n) { // stores the maximum of all // perfect square numbers int maxi = -1; // Traverse all elements in the array for (int i = 0; i < n; i++) { // store the maximum if current // element is a perfect square if (checkPerfectSquare(a[i])) maxi = max(a[i], maxi); } return maxi; } // Driver Code int main() { int a[] = { 16, 20, 25, 2, 3, 10 }; double n = sizeof(a) / sizeof(a[0]); cout << largestPerfectSquareNumber(a, n); return 0; }
C
// C program to find the largest perfect // square number among n numbers #include <stdio.h> #include <stdbool.h> #include <math.h> int max(int a,int b) { int max = a; if(max < b) max = b; return max; } // Function to check if a number // is perfect square number or not bool checkPerfectSquare(double n) { // takes the sqrt of the number double d = sqrt(n); // checks if it is a perfect // square number if (d * d == n) return true; return false; } // Function to find the largest perfect // square number in the array int largestPerfectSquareNumber(int a[], double n) { // stores the maximum of all // perfect square numbers int maxi = -1; // Traverse all elements in the array for (int i = 0; i < n; i++) { // store the maximum if current // element is a perfect square if (checkPerfectSquare(a[i])) maxi = max(a[i], maxi); } return maxi; } // Driver Code int main() { int a[] = { 16, 20, 25, 2, 3, 10 }; double n = sizeof(a) / sizeof(a[0]); printf("%d",largestPerfectSquareNumber(a, n)); return 0; } // This code is contributed by kothavvsaakash.
Java
// Java program to find the largest perfect // square number among n numbers import java.lang.Math; import java.io.*; class GFG { // Function to check if a number // is perfect square number or not static boolean checkPerfectSquare(double n) { // takes the sqrt of the number double d = Math.sqrt(n); // checks if it is a perfect // square number if (d * d == n) return true; return false; } // Function to find the largest perfect // square number in the array static int largestPerfectSquareNumber(int a[], double n) { // stores the maximum of all // perfect square numbers int maxi = -1; // Traverse all elements in the array for (int i = 0; i < n; i++) { // store the maximum if current // element is a perfect square if (checkPerfectSquare(a[i])) maxi = Math.max(a[i], maxi); } return maxi; } // Driver Code public static void main (String[] args) { int []a = { 16, 20, 25, 2, 3, 10 }; double n = a.length; System.out.println( largestPerfectSquareNumber(a, n)); } } // This code is contributed // by inder_verma..
Python3
# Python3 program to find the largest perfect # square number among n numbers # from math lib import sqrt() from math import sqrt # Function to check if a number # is perfect square number or not def checkPerfectSquare(n) : # takes the sqrt of the number d = sqrt(n) # checks if it is a perfect # square number if d * d == n : return True return False # Function to find the largest perfect # square number in the array def largestPerfectSquareNumber(a, n) : # stores the maximum of all # perfect square numbers maxi = -1 # Traverse all elements in the array for i in range(n) : # store the maximum if current # element is a perfect square if(checkPerfectSquare(a[i])) : maxi = max(a[i], maxi) return maxi # Driver code if __name__ == "__main__" : a = [16, 20, 25, 2, 3, 10 ] n = len(a) print(largestPerfectSquareNumber(a, n)) # This code is contributed by Ryuga
C#
// C# program to find the largest perfect // square number among n numbers using System; class GFG { // Function to check if a number // is perfect square number or not static bool checkPerfectSquare(double n) { // takes the sqrt of the number double d = Math.Sqrt(n); // checks if it is a perfect // square number if (d * d == n) return true; return false; } // Function to find the largest perfect // square number in the array static int largestPerfectSquareNumber(int []a, double n) { // stores the maximum of all // perfect square numbers int maxi = -1; // Traverse all elements in the array for (int i = 0; i < n; i++) { // store the maximum if current // element is a perfect square if (checkPerfectSquare(a[i])) maxi = Math.Max(a[i], maxi); } return maxi; } // Driver Code public static void Main () { int []a = { 16, 20, 25, 2, 3, 10 }; double n = a.Length; Console.WriteLine( largestPerfectSquareNumber(a, n)); } } // This code is contributed // by inder_verma..
PHP
<?php // PHP program to find the largest perfect // square number among n numbers // Function to check if a number // is perfect square number or not function checkPerfectSquare($n) { // takes the sqrt of the number $d = sqrt($n); // checks if it is a perfect // square number if ($d * $d == $n) return true; return false; } // Function to find the largest perfect // square number in the array function largestPerfectSquareNumber($a, $n) { // stores the maximum of all // perfect square numbers $maxi = -1; // Traverse all elements in the array for ($i = 0; $i <$n; $i++) { // store the maximum if current // element is a perfect square if (checkPerfectSquare($a[$i])) $maxi = max($a[$i], $maxi); } return $maxi; } // Driver Code $a = array( 16, 20, 25, 2, 3, 10 ); $n = count($a); echo largestPerfectSquareNumber($a, $n); // This code is contributed // by inder_verma. ?>
Javascript
<script> // Javascript program to find the largest perfect // square number among n numbers // Function to check if a number // is perfect square number or not function checkPerfectSquare(n) { // takes the sqrt of the number let d = Math.sqrt(n); // checks if it is a perfect // square number if (d * d == n) return true; return false; } // Function to find the largest perfect // square number in the array function largestPerfectSquareNumber(a, n) { // stores the maximum of all // perfect square numbers let maxi = -1; // Traverse all elements in the array for (let i = 0; i < n; i++) { // store the maximum if current // element is a perfect square if (checkPerfectSquare(a[i])) maxi = Math.max(a[i], maxi); } return maxi; } // Driver Code let a = [ 16, 20, 25, 2, 3, 10 ]; let n = a.length; document.write(largestPerfectSquareNumber(a, n)); // This code is contributed by souravmahato348. </script>
25
Complejidad temporal: O( )
Espacio auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por VishalBachchas y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA