En este artículo, estudiamos una forma optimizada de calcular la factorización prima distinta hasta n número natural utilizando la complejidad de tiempo O O(n*log n) con precálculo permitido.
Prerrequisitos: Tamiz de Eratóstenes , Factor mínimo primo de números hasta n .
Concepto clave: nuestra idea es almacenar el factor primo más pequeño (SPF) para cada número. Luego, para calcular la factorización prima distinta del número dado dividiendo el número dado recursivamente con su factor primo más pequeño hasta que se convierte en 1.
Para calcular el factor primo más pequeño para cada número usaremos la criba de eratóstenes . En el Sieve original, cada vez que marcamos un número como no primo, almacenamos el factor primo más pequeño correspondiente a ese número (consulte este artículo para una mejor comprensión).
La implementación para el método anterior se da a continuación:
C++
// C++ program to find prime factorization upto n natural number // O(n*Log n) time with precomputation #include <bits/stdc++.h> using namespace std; #define MAXN 100001 // Stores smallest prime factor for every number int spf[MAXN]; // Adjacency vector to store distinct prime factors vector<int>adj[MAXN]; // Calculating SPF (Smallest Prime Factor) for every // number till MAXN. // Time Complexity : O(nloglogn) void sieve() { spf[1] = 1; // marking smallest prime factor for every // number to be itself. for (int i=2; i<MAXN; i++) spf[i] = i; for (int i=2; i*i<MAXN; i++) { // checking if i is prime if (spf[i] == i) { // marking SPF for all numbers divisible by i for (int j=i*i; j<MAXN; j+=i) // marking spf[j] if it is not // previously marked if (spf[j]==j) spf[j] = i; } } } // A O(nlog n) function returning distinct primefactorization // upto n natural number by dividing by smallest prime factor // at every step void getdistinctFactorization(int n) { int index,x,i; for(int i=1;i<=n;i++) { index=1; x=i; if(x!=1) adj[i].push_back(spf[x]); x=x/spf[x]; // Push all distinct prime factor in adj while (x != 1) { if (adj[i][index-1]!=spf[x]) { adj[i].push_back(spf[x]); index+=1; } x = x / spf[x]; } } } // Driver code int main() { // Precalculating smallest prime factor sieve(); int n = 10; getdistinctFactorization(n); // Print the prime count cout <<"Distinct prime factor for first " << n <<" natural number" <<" : "; for (int i=1; i<=n; i++) cout << adj[i].size() << " "; return 0; }
Java
// Java program to find prime factorization upto n natural number // O(n*Log n) time with precomputation import java.io.*; import java.util.*; class GFG { static int MAXN = 100001; // Stores smallest prime factor for every number static int[] spf = new int[MAXN]; // Adjacency vector to store distinct prime factors static ArrayList<ArrayList<Integer>> adj = new ArrayList<ArrayList<Integer>>(); // Calculating SPF (Smallest Prime Factor) for every // number till MAXN. // Time Complexity : O(nloglogn) static void sieve() { for(int i = 0; i < MAXN; i++) { adj.add(new ArrayList<Integer>()); } spf[1] = 1; // marking smallest prime factor for every // number to be itself. for (int i = 2; i < MAXN; i++) { spf[i] = i; } for (int i = 2; i * i < MAXN; i++) { // checking if i is prime if (spf[i] == i) { // marking SPF for all numbers divisible by i for (int j = i * i; j < MAXN; j += i) { // marking spf[j] if it is not // previously marked if (spf[j] == j) spf[j] = i; } } } } // A O(nlog n) function returning distinct primefactorization // upto n natural number by dividing by smallest prime factor // at every step static void getdistinctFactorization(int n) { int index, x, i; for(i = 1; i <= n; i++) { index = 1; x = i; if(x != 1) adj.get(i).add(spf[x]); x = x / spf[x]; // Push all distinct prime factor in adj while (x != 1) { if (adj.get(i).get(index - 1) != spf[x]) { adj.get(i).add(spf[x]); index += 1; } x = x / spf[x]; } } } // Driver code public static void main (String[] args) { // Precalculating smallest prime factor sieve(); int n = 10; getdistinctFactorization(n); // Print the prime count System.out.print("Distinct prime factor for first " + n + " natural number" + " : "); for (int i = 1; i <= n; i++) { System.out.print(adj.get(i).size()+ " "); } } } // This code is contributed by avanitrachhadiya2155
Python3
# Python3 program to find prime factorization upto n natural number # O(n*Log n) time with precomputation # Calculating SPF (Smallest Prime Factor) for every # number till MAXN. # Time Complexity : O(nloglogn) def sieve(): global spf, adj, MAXN spf[1] = 1 # marking smallest prime factor for every # number to be itself. for i in range(2, MAXN): spf[i] = i for i in range(2, MAXN): if i * i > MAXN: break # checking if i is prime if (spf[i] == i): # marking SPF for all numbers divisible by i for j in range(i * i, MAXN, i): # marking spf[j] if it is not # previously marked if (spf[j] == j): spf[j] = i # A O(nlog n) function returning distinct primefactorization # upto n natural number by dividing by smallest prime factor # at every step def getdistinctFactorization(n): global adj, spf, MAXN index = 0 for i in range(1, n + 1): index = 1 x = i if(x != 1): adj[i].append(spf[x]) x = x // spf[x] # Push all distinct prime factor in adj while (x != 1): if (adj[i][index - 1] != spf[x]): adj[i].append(spf[x]) index += 1 x = x // spf[x] # Driver code if __name__ == '__main__': MAXN = 100001 spf = [0 for i in range(MAXN)] adj = [[] for i in range(MAXN)] # Precalculating smallest prime factor sieve() n = 10 getdistinctFactorization(n) # Print prime count print("Distinct prime factor for first ", n, " natural number : ", end = "") for i in range(1, n + 1): print(len(adj[i]), end = " ") # This code is contributed by mohit kumar 29
C#
using System; using System.Collections.Generic; public class GFG { static int MAXN = 100001; // Stores smallest prime factor for every number static int[] spf = new int[MAXN]; // Adjacency vector to store distinct prime factors static List<List<int>> adj = new List<List<int>>(); // Calculating SPF (Smallest Prime Factor) for every // number till MAXN. // Time Complexity : O(nloglogn) static void sieve() { for(int i = 0; i < MAXN; i++) { adj.Add(new List<int>()); } spf[1] = 1; // marking smallest prime factor for every // number to be itself. for (int i = 2; i < MAXN; i++) { spf[i] = i; } for (int i = 2; i * i < MAXN; i++) { // checking if i is prime if (spf[i] == i) { // marking SPF for all numbers divisible by i for (int j = i * i; j < MAXN; j += i) { // marking spf[j] if it is not // previously marked if (spf[j] == j) spf[j] = i; } } } } // A O(nlog n) function returning distinct primefactorization // upto n natural number by dividing by smallest prime factor // at every step static void getdistinctFactorization(int n) { int index, x, i; for(i = 1; i <= n; i++) { index = 1; x = i; if(x != 1) { adj[i].Add(spf[x]); } x = x / spf[x]; // Push all distinct prime factor in adj while (x != 1) { if (adj[i][index-1] != spf[x]) { adj[i].Add(spf[x]); index += 1; } x = x / spf[x]; } } } // Driver code static public void Main () { // Precalculating smallest prime factor sieve(); int n = 10; getdistinctFactorization(n); // Print the prime count Console.Write("Distinct prime factor for first " + n + " natural number" + " : "); for (int i = 1; i <= n; i++) { Console.Write(adj[i].Count + " "); } } } // This code is contributed by rag2127
Javascript
<script> // Javascript program to find prime // factorization upto n natural number // O(n*Log n) time with precomputation let MAXN = 100001; // Stores smallest prime factor // for every number let spf = new Array(MAXN); // Adjacency vector to store distinct prime factors let adj=[]; // Calculating SPF (Smallest Prime Factor) for every // number till MAXN. // Time Complexity : O(nloglogn) function sieve() { for(let i = 0; i < MAXN; i++) { adj.push([]); } spf[1] = 1; // marking smallest prime factor for every // number to be itself. for (let i = 2; i < MAXN; i++) { spf[i] = i; } for (let i = 2; i * i < MAXN; i++) { // checking if i is prime if (spf[i] == i) { // marking SPF for all numbers divisible by i for (let j = i * i; j < MAXN; j += i) { // marking spf[j] if it is not // previously marked if (spf[j] == j) spf[j] = i; } } } } // A O(nlog n) function returning // distinct primefactorization // upto n natural number by dividing by // smallest prime factor // at every step function getdistinctFactorization(n) { let index, x, i; for(i = 1; i <= n; i++) { index = 1; x = i; if(x != 1) adj[i].push(spf[x]); x = Math.floor(x / spf[x]); // Push all distinct prime factor in adj while (x != 1) { if (adj[i][index - 1] != spf[x]) { adj[i].push(spf[x]); index += 1; } x = Math.floor(x / spf[x]); } } } // Driver code // Precalculating smallest prime factor sieve(); let n = 10; getdistinctFactorization(n); // Print the prime count document.write("Distinct prime factor for first " + n + " natural number" + " : "); for (let i = 1; i <= n; i++) { document.write(adj[i].length+ " "); } // This code is contributed by unknown2108 </script>
Distinct prime factor for first 10 natural number : 0 1 1 1 1 2 1 1 1 2
Publicación traducida automáticamente
Artículo escrito por Swati Bararia y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA