Número de formas de elegir K substrings iguales de cualquier longitud para cada consulta

Dada una string str y consultas Q. Cada consulta consta de un entero K . La tarea es encontrar el número de formas de elegir K substrings iguales de cualquier longitud posible para cada consulta. Tenga en cuenta que el conjunto de K substrings debe ser único.
Ejemplos: 
 

Entrada: str = “aabaab”, que[] = {3} 
Salida:
“a” es la única substring que aparece más de 3 veces, es decir, 4. 
Y hay 4 formas de elegir 3 strings diferentes de las 4 dadas instrumentos de cuerda.
Entrada: str = “aggghh”, que[] = {1, 2, 3} 
Salida: 
21 


 

Planteamiento: Se pueden seguir los siguientes pasos para resolver el problema y responder todas las consultas en el mínimo tiempo posible. 
 

  • Genere todas las substrings para una string y cuente la aparición de cada substring única mediante hashing.
  • Para cada consulta, la respuesta será elegir K substrings de cada string que ocurra más de K veces (digamos X). la respuesta sera X \choose K
  • La complejidad del tiempo por consulta se puede reducir calculando previamente el coeficiente binomial

A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define maxlen 100
 
// Function to generate all the sub-strings
void generateSubStrings(string s, unordered_map<string,
                                                int>& mpp)
{
 
    // Length of the string
    int l = s.length();
 
    // Generate all sub-strings
    for (int i = 0; i < l; i++) {
        string temp = "";
        for (int j = i; j < l; j++) {
            temp += s[j];
 
            // Count the occurrence of
            // every sub-string
            mpp[temp] += 1;
        }
    }
}
 
// Compute the Binomial Coefficient
void binomialCoeff(int C[maxlen][maxlen])
{
    int i, j;
 
    // Calculate value of Binomial Coefficient
    // in bottom up manner
    for (i = 0; i < 100; i++) {
        for (j = 0; j < 100; j++) {
 
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
 
            // Calculate value using previously
            // stored values
            else
                C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
        }
    }
}
 
// Function to return the result for a query
int answerQuery(unordered_map<string, int>& mpp,
                int C[maxlen][maxlen], int k)
{
    int ans = 0;
 
    // Iterate for every
    // unique sub-string
    for (auto it : mpp) {
 
        // Count the combinations
        if (it.second >= k)
            ans += C[it.second][k];
    }
 
    return ans;
}
 
// Driver code
int main()
{
    string s = "aabaab";
 
    // Get all the sub-strings
    // Store the occurrence of
    // all the sub-strings
    unordered_map<string, int> mpp;
    generateSubStrings(s, mpp);
 
    // Pre-computation
    int C[maxlen][maxlen];
    memset(C, 0, sizeof C);
    binomialCoeff(C);
 
    // Queries
    int queries[] = { 2, 3, 4 };
    int q = sizeof(queries) / sizeof(queries[0]);
 
    // Perform queries
    for (int i = 0; i < q; i++)
        cout << answerQuery(mpp, C, queries[i]) << endl;
 
    return 0;
}

Java

// Java implementation of the approach
import java.util.HashMap;
 
class GFG
{
    static int maxlen = 100;
 
    // Function to generate all the sub-strings
    public static void generateSubStrings(
                       String s, HashMap<String,
                                         Integer> mpp)
    {
 
        // Length of the string
        int l = s.length();
 
        // Generate all sub-strings
        for (int i = 0; i < l; i++)
        {
            String temp = "";
            for (int j = i; j < l; j++)
            {
                temp += s.charAt(j);
 
                // Count the occurrence of
                // every sub-string
                if (mpp.containsKey(temp))
                {
                    int x = mpp.get(temp);
                    mpp.put(temp, ++x);
                }
                else
                    mpp.put(temp, 1);
            }
        }
    }
 
    // Compute the Binomial Coefficient
    public static void binomialCoeff(int[][] C)
    {
        int i, j;
 
        // Calculate value of Binomial Coefficient
        // in bottom up manner
        for (i = 1; i < 100; i++)
        {
            for (j = 0; j < 100; j++)
            {
 
                // Base Cases
                if (j == 0 || j == i)
                    C[i][j] = 1;
 
                // Calculate value using previously
                // stored values
                else
                    C[i][j] = C[i - 1][j - 1] +
                              C[i - 1][j];
            }
        }
    }
 
    // Function to return the result for a query
    public static int answerQuery(HashMap<String,
                                          Integer> mpp,
                                      int[][] C, int k)
    {
        int ans = 0;
 
        // Iterate for every
        // unique sub-string
        for (HashMap.Entry<String,
                           Integer> entry : mpp.entrySet())
        {
 
            // Count the combinations
            if (entry.getValue() >= k)
                ans += C[entry.getValue()][k];
        }
        return ans;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        String s = "aabaab";
 
        // Get all the sub-strings
        // Store the occurrence of
        // all the sub-strings
        HashMap<String,
                Integer> mpp = new HashMap<>();
        generateSubStrings(s, mpp);
 
        // Pre-computation
        int[][] C = new int[maxlen][maxlen];
        binomialCoeff(C);
 
        // Queries
        int[] queries = { 2, 3, 4 };
        int q = queries.length;
 
        // Perform queries
        for (int i = 0; i < q; i++)
            System.out.println(answerQuery(mpp, C,
                                     queries[i]));
    }
}
 
// This code is contributed by
// sanjeev2552

Python3

# Python3 implementation of the approach
from collections import defaultdict
 
maxlen = 100
 
# Function to generate all the sub-strings
def generateSubStrings(s, mpp):
 
    # Length of the string
    l = len(s)
 
    # Generate all sub-strings
    for i in range(0, l):
        temp = ""
        for j in range(i, l):
            temp += s[j]
 
            # Count the occurrence of
            # every sub-string
            mpp[temp] += 1
 
# Compute the Binomial Coefficient
def binomialCoeff(C):
 
    # Calculate value of Binomial
    # Coefficient in bottom up manner
    for i in range(0, 100):
        for j in range(0, 100):
 
            # Base Cases
            if j == 0 or j == i:
                C[i][j] = 1
 
            # Calculate value using previously
            # stored values
            else:
                C[i][j] = C[i - 1][j - 1] + C[i - 1][j]
 
# Function to return the result for a query
def answerQuery(mpp, C, k):
 
    ans = 0
    # Iterate for every
    # unique sub-string
    for it in mpp:
 
        # Count the combinations
        if mpp[it] >= k:
            ans += C[mpp[it]][k]
 
    return ans
 
# Driver code
if __name__ == "__main__":
     
    s = "aabaab"
     
    # Get all the sub-strings
    # Store the occurrence of
    # all the sub-strings
    mpp = defaultdict(lambda:0)
    generateSubStrings(s, mpp)
 
    # Pre-computation
    C = [[0 for i in range(maxlen)]
            for j in range(maxlen)]
    binomialCoeff(C)
 
    # Queries
    queries = [2, 3, 4]
    q = len(queries)
 
    # Perform queries
    for i in range(0, q):
        print(answerQuery(mpp, C, queries[i]))
         
# This code is contributed by Rituraj Jain

C#

// C# code to print level order
// traversal in sorted order
using System;
using System.Collections.Generic;
 
class GFG
{
    static int maxlen = 100;
 
    // Function to generate all the sub-strings
    public static void generateSubStrings(String s,
                               Dictionary<String, int> mpp)
    {
 
        // Length of the string
        int l = s.Length;
 
        // Generate all sub-strings
        for (int i = 0; i < l; i++)
        {
            String temp = "";
            for (int j = i; j < l; j++)
            {
                temp += s[j];
 
                // Count the occurrence of
                // every sub-string
                if (mpp.ContainsKey(temp))
                {
                    mpp[temp] = ++mpp[temp];
                }
                else
                    mpp.Add(temp, 1);
            }
        }
    }
 
    // Compute the Binomial Coefficient
    public static void binomialCoeff(int[,] C)
    {
        int i, j;
 
        // Calculate value of Binomial Coefficient
        // in bottom up manner
        for (i = 1; i < 100; i++)
        {
            for (j = 0; j < 100; j++)
            {
 
                // Base Cases
                if (j == 0 || j == i)
                    C[i, j] = 1;
 
                // Calculate value using previously
                // stored values
                else
                    C[i, j] = C[i - 1, j - 1] +
                              C[i - 1, j];
            }
        }
    }
 
    // Function to return the result for a query
    public static int answerQuery(Dictionary<String, int> mpp,
                                           int[,] C, int k)
    {
        int ans = 0;
 
        // Iterate for every
        // unique sub-string
        foreach(KeyValuePair<String, int> entry in mpp)
        {
 
            // Count the combinations
            if (entry.Value >= k)
                ans += C[entry.Value, k];
        }
        return ans;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        String s = "aabaab";
 
        // Get all the sub-strings
        // Store the occurrence of
        // all the sub-strings
        Dictionary<String,
                   int> mpp = new Dictionary<String,   
                                             int>();
        generateSubStrings(s, mpp);
 
        // Pre-computation
        int[,] C = new int[maxlen, maxlen];
        binomialCoeff(C);
 
        // Queries
        int[] queries = { 2, 3, 4 };
        int q = queries.Length;
 
        // Perform queries
        for (int i = 0; i < q; i++)
            Console.WriteLine(answerQuery(mpp, C,
                                    queries[i]));
    }
}
 
// This code is contributed by 29AjayKumar

Javascript

<script>
 
// JavaScript implementation of the approach
 
let maxlen = 100;
 
// Function to generate all the sub-strings
function generateSubStrings(s,mpp)
{
    // Length of the string
        let l = s.length;
   
        // Generate all sub-strings
        for (let i = 0; i < l; i++)
        {
            let temp = "";
            for (let j = i; j < l; j++)
            {
                temp += s[j];
   
                // Count the occurrence of
                // every sub-string
                if (mpp.has(temp))
                {
                    let x = mpp.get(temp);
                    mpp.set(temp, ++x);
                }
                else
                    mpp.set(temp, 1);
            }
        }
}
 
// Compute the Binomial Coefficient
function binomialCoeff(C)
{
    let i, j;
   
        // Calculate value of Binomial Coefficient
        // in bottom up manner
        for (i = 1; i < 100; i++)
        {
            for (j = 0; j < 100; j++)
            {
   
                // Base Cases
                if (j == 0 || j == i)
                    C[i][j] = 1;
   
                // Calculate value using previously
                // stored values
                else
                    C[i][j] = C[i - 1][j - 1] +
                              C[i - 1][j];
            }
        }
}
 
// Function to return the result for a query
function answerQuery(mpp,C,k)
{
    let ans = 0;
   
        // Iterate for every
        // unique sub-string
        for (let[key,value] of mpp.entries())
        {
   
            // Count the combinations
            if (value >= k)
                ans += C[value][k];
        }
        return ans;
}
 
// Driver code
let s = "aabaab";
 
// Get all the sub-strings
// Store the occurrence of
// all the sub-strings
let mpp = new Map();
generateSubStrings(s, mpp);
 
// Pre-computation
let C = new Array(maxlen);
for(let i=0;i<maxlen;i++)
{
    C[i]=new Array(maxlen);
    for(let j=0;j<maxlen;j++)
        C[i][j]=0;
}
binomialCoeff(C);
 
// Queries
let queries = [ 2, 3, 4 ];
let q = queries.length;
 
// Perform queries
for (let i = 0; i < q; i++)
    document.write(answerQuery(mpp, C,
                               queries[i])+"<br>");
 
 
// This code is contributed by rag2127
 
</script>
Producción: 

10
4
1

 

Complejidad de tiempo: O (max (100 * 100, N * N)), ya que estamos usando bucles anidados para atravesar N * N y 100 * 100 veces. Donde N es la longitud de la string.

Espacio auxiliar: O(max(100*100,N*N)), ya que estamos usando espacio adicional para el mapa y la array C. Donde N es la longitud de la string.

Publicación traducida automáticamente

Artículo escrito por Striver y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *