Número de pares de índices tales que s[i] y s[j] son ​​anagramas

Dada una array s[] de N strings. La tarea es encontrar el número de pares de índices (i, j) tales que s[i] es un anagrama de s[j] .

Ejemplos: 

Entrada: s[] = {“aaab”, “aaba”, “cde”, “dec”} 
Salida:
(“aaab”, “aaba”) y (“cde”, “dec”) son los únicos pares válidos .

Entrada: s[] = {“ab”, “bc”, “cd”} 
Salida:

Enfoque: un enfoque eficiente es ordenar cada string y aumentar el recuento de la misma en un mapa . Para cada string en el mapa, si k es su cuenta, entonces (k * (k – 1)) / 2 es el número de pares válidos.

A continuación se muestra la implementación del enfoque anterior:  

C++

// CPP program to find number of pairs of integers
// i, j such that s[i] is an anagram of s[j].
#include <bits/stdc++.h>
using namespace std;
 
// Function to find number of pairs of integers
// i, j such that s[i] is an anagram of s[j].
int anagram_pairs(vector<string> s, int n)
{
    // To store count of strings
    map<string, int> mp;
 
    // Traverse all strings and store in the map
    for (int i = 0; i < n; i++) {
        // Sort the string
        sort(s[i].begin(), s[i].end());
 
        // Store in the map
        mp[s[i]]++;
    }
 
    // To store the number of pairs
    int ans = 0;
 
    // Traverse through the map
    for (auto i = mp.begin(); i != mp.end(); i++) {
        int k = i->second;
 
        // Count the pairs for each string
        ans += (k * (k - 1)) / 2;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
int main()
{
    vector<string> s = { "aaab", "aaba", "baaa",
                         "cde", "dec" };
 
    int n = s.size();
 
    // Function call
    cout << anagram_pairs(s, n);
 
    return 0;
}

Java

// Java program to find number of pairs of integers
// i, j such that s[i] is an anagram of s[j].
import java.util.*;
class GFG
{
     
// Function to find number of pairs of integers
// i, j such that s[i] is an anagram of s[j].
static int anagram_pairs(String []s, int n)
{
    // To store count of strings
    Map<String, Integer> mp = new HashMap<>();
 
    // Traverse all strings and store in the map
    for (int i = 0; i < n; i++)
    {
        // Sort the string
        char []chArr = s[i].toCharArray();
        Arrays.sort(chArr);
        s[i] = new String(chArr);
         
        // Store in the map
        if(mp.containsKey(s[i]))
        {
            mp.put(s[i], mp.get(s[i]) + 1);
        }
        else
        {
            mp.put(s[i], 1);
        }
    }
 
    // To store the number of pairs
    int ans = 0;
 
    // Traverse through the map
    for (Map.Entry<String,
                   Integer> i : mp.entrySet())
    {
        int k = i.getValue();
 
        // Count the pairs for each string
        ans += (k * (k - 1)) / 2;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
public static void main(String []args)
{
    String [] s = { "aaab", "aaba", "baaa",
                            "cde", "dec" };
 
    int n = s.length;
 
    // Function call
    System.out.println(anagram_pairs(s, n));
}
}
 
// This code is contributed by 29AjayKumar

Python3

# Python3 implementation to find 
# number of pairs of integers i, j 
# such that s[i] is an anagram of s[j]. 
   
# Function to find number of pairs of integers 
# i, j such that s[i] is an anagram of s[j].
def anagram_pairs(s, n):
    # To store the count of sorted strings
    mp = dict()
 
    # Traverse all strings and store in the map
    for i in range(n):
        # Sort the string
        temp_str = "".join(sorted(s[i]))
 
        # If string exists in map, increment count
        # Else create key value pair with count = 1
        if temp_str in mp:
            mp[temp_str] += 1
        else:
            mp[temp_str] = 1
 
    # To store the number of pairs
    ans = 0
 
    # Traverse through the map
    for k in mp.values():
 
        # Count the pairs for each string
        ans += (k * (k - 1)) // 2
 
    # Return the required answer
    return ans
 
# Driver code
if __name__ == "__main__":
    s = ["aaab", "aaba", "baaa", "cde", "dec"]
    n = len(s)
 
    print(anagram_pairs(s, n))
 
# This code is contributed by AnkitRai01

C#

// C# program to find number of pairs of integers
// i, j such that s[i] is an anagram of s[j].
using System;
using System.Collections.Generic;
 
class GFG
{
     
// Function to find number of pairs of integers
// i, j such that s[i] is an anagram of s[j].
static int anagram_pairs(String []s, int n)
{
    // To store count of strings
    Dictionary<String,
               int> mp = new Dictionary<String,
                                        int>();
 
    // Traverse all strings and store in the map
    for (int i = 0; i < n; i++)
    {
        // Sort the string
        char []chArr = s[i].ToCharArray();
        Array.Sort(chArr);
        s[i] = new String(chArr);
         
        // Store in the map
        if(mp.ContainsKey(s[i]))
        {
            mp[s[i]] = mp[s[i]] + 1;
        }
        else
        {
            mp.Add(s[i], 1);
        }
    }
 
    // To store the number of pairs
    int ans = 0;
 
    // Traverse through the map
    foreach (KeyValuePair<String,
                    int> i in mp)
    {
        int k = i.Value;
 
        // Count the pairs for each string
        ans += (k * (k - 1)) / 2;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
public static void Main(String []args)
{
    String [] s = { "aaab", "aaba", "baaa",
                            "cde", "dec" };
 
    int n = s.Length;
 
    // Function call
    Console.WriteLine(anagram_pairs(s, n));
}
}
 
// This code is contributed by PrinciRaj1992

Javascript

<script>
// Javascript program to find number of pairs of integers
// i, j such that s[i] is an anagram of s[j].
 
// Function to find number of pairs of integers
// i, j such that s[i] is an anagram of s[j].
function anagram_pairs(s, n)
{
    // To store count of strings
    let mp = new Map();
 
    // Traverse all strings and store in the map
    for (let i = 0; i < n; i++) {
        // Sort the string
        let chArr = s[i].split("");
        chArr.sort();
        s[i] = chArr.join("");
 
        // Store in the map
        if(mp.has(s[i])){
            mp.set(s[i], mp.get(s[i]) + 1)
        }else{
            mp.set(s[i], 1)
        }
    }
 
    // To store the number of pairs
    let ans = 0;
 
    // Traverse through the map
    for (let i of mp) {
        let k = i[1];
 
        // Count the pairs for each string
        ans += Math.floor((k * (k - 1)) / 2);
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
    let s = [ "aaab", "aaba", "baaa", "cde", "dec" ];
 
    let n = s.length;
 
    // Function call
    document.write(anagram_pairs(s, n));
 
// This code is contributed by _saurabh_jaiswal
</script>
Producción: 

4

 

Complejidad de tiempo: O(n 2 * logn)

Espacio Auxiliar: O(n)

Publicación traducida automáticamente

Artículo escrito por pawan_asipu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *