Número de strings binarias tales que no hay substring de longitud ≥ 3

Dado un número entero N , la tarea es contar el número de strings binarias posibles de modo que no haya una substring de longitud ≥ 3 de todos los 1. Este recuento puede llegar a ser muy grande, así que imprima la respuesta módulo 10 9 + 7 .
Ejemplos: 
 

Entrada: N = 4 
Salida: 13 
Todas las strings válidas posibles son 0000, 0001, 0010, 0100, 
1000, 0101, 0011, 1010, 1001, 0110, 1100, 1101 y 1011.
Entrada: N = 2 
Salida:
 

Enfoque: para cada valor de 1 a N , las únicas strings requeridas son en las que el número de substrings en las que ‘1’ aparece consecutivamente solo dos veces, una vez o cero veces. Esto se puede calcular de 2 a N recursivamente. La programación dinámica se puede utilizar para la memorización donde dp[i][j] almacenará el número de posibles strings de forma que 1 aparezca consecutivamente j veces hasta el i -ésimo índice y j será 0, 1, 2, …, i (puede variar de 1 a N ). 
dp[i][0] = dp[i – 1][0] + dp[i – 1][1] + dp[i – 1][2] como en la posición i , se pondrá  0 .
dp[i][1] = dp[i – 1][0] ya que no hay 1 en la (i – 1) ésima posición, entonces tomamos ese valor. 
dp[i][2] = dp[i – 1][1] ya que el primer 1 apareció en (i – 1) la posición th (consecutivamente) así que tomamos ese valor directamente. 
Los casos base son para una string de longitud 1, es decir , dp[1][0] = 1 , dp[1][1] = 1 , dp[1][2] = 0 . Entonces, encuentre todo el valor dp[N][0] + dp[N][1] + dp[N][2] y la suma de todos los casos posibles en el Nª posición.
A continuación se muestra la implementación del enfoque anterior: 
 

CPP

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
const long MOD = 1000000007;
 
// Function to return the count of
// all possible binary strings
long countStr(long N)
{
 
    long dp[N + 1][3];
 
    // Fill 0's in the dp array
    memset(dp, 0, sizeof(dp));
 
    // Base cases
    dp[1][0] = 1;
    dp[1][1] = 1;
    dp[1][2] = 0;
 
    for (int i = 2; i <= N; i++) {
 
        // dp[i][j] is the number of possible
        // strings such that '1' just appeared
        // consecutively j times upto ith index
        dp[i][0] = (dp[i - 1][0] + dp[i - 1][1]
                    + dp[i - 1][2])
                   % MOD;
 
        // Taking previously calculated value
        dp[i][1] = dp[i - 1][0] % MOD;
        dp[i][2] = dp[i - 1][1] % MOD;
    }
 
    // Taking all the possible cases that
    // can appear at the Nth position
    long ans = (dp[N][0] + dp[N][1] + dp[N][2]) % MOD;
 
    return ans;
}
 
// Driver code
int main()
{
    long N = 8;
 
    cout << countStr(N);
 
    return 0;
}

Java

// Java implementation of the approach
class GFG
{
     
    final static long MOD = 1000000007;
     
    // Function to return the count of
    // all possible binary strings
    static long countStr(int N)
    {
        long dp[][] = new long[N + 1][3];
     
        // Fill 0's in the dp array
        //memset(dp, 0, sizeof(dp));
     
        // Base cases
        dp[1][0] = 1;
        dp[1][1] = 1;
        dp[1][2] = 0;
     
        for (int i = 2; i <= N; i++)
        {
     
            // dp[i][j] is the number of possible
            // strings such that '1' just appeared
            // consecutively j times upto ith index
            dp[i][0] = (dp[i - 1][0] + dp[i - 1][1]
                        + dp[i - 1][2]) % MOD;
     
            // Taking previously calculated value
            dp[i][1] = dp[i - 1][0] % MOD;
            dp[i][2] = dp[i - 1][1] % MOD;
        }
     
        // Taking all the possible cases that
        // can appear at the Nth position
        long ans = (dp[N][0] + dp[N][1] + dp[N][2]) % MOD;
     
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int N = 8;
     
        System.out.println(countStr(N));
    }
}
 
// This code is contributed by AnkitRai01

Python

# Python3 implementation of the approach
MOD = 1000000007
 
# Function to return the count of
# all possible binary strings
def countStr(N):
 
    dp = [[0 for i in range(3)] for i in range(N + 1)]
 
    # Base cases
    dp[1][0] = 1
    dp[1][1] = 1
    dp[1][2] = 0
 
    for i in range(2, N + 1):
 
        # dp[i][j] is the number of possible
        # strings such that '1' just appeared
        # consecutively j times upto ith index
        dp[i][0] = (dp[i - 1][0] + dp[i - 1][1] +
                    dp[i - 1][2]) % MOD
 
        # Taking previously calculated value
        dp[i][1] = dp[i - 1][0] % MOD
        dp[i][2] = dp[i - 1][1] % MOD
 
    # Taking all the possible cases that
    # can appear at the Nth position
    ans = (dp[N][0] + dp[N][1] + dp[N][2]) % MOD
 
    return ans
 
# Driver code
if __name__ == '__main__':
    N = 8
 
    print(countStr(N))
 
# This code is contributed by mohit kumar 29

C#

// C# implementation of the approach
using System;
 
class GFG
{
     
    static long MOD = 1000000007;
     
    // Function to return the count of
    // all possible binary strings
    static long countStr(int N)
    {
        long [,]dp = new long[N + 1, 3];
     
        // Base cases
        dp[1, 0] = 1;
        dp[1, 1] = 1;
        dp[1, 2] = 0;
     
        for (int i = 2; i <= N; i++)
        {
     
            // dp[i,j] is the number of possible
            // strings such that '1' just appeared
            // consecutively j times upto ith index
            dp[i, 0] = (dp[i - 1, 0] + dp[i - 1, 1]
                        + dp[i - 1, 2]) % MOD;
     
            // Taking previously calculated value
            dp[i, 1] = dp[i - 1, 0] % MOD;
            dp[i, 2] = dp[i - 1, 1] % MOD;
        }
     
        // Taking all the possible cases that
        // can appear at the Nth position
        long ans = (dp[N, 0] + dp[N, 1] + dp[N, 2]) % MOD;
     
        return ans;
    }
     
    // Driver code
    public static void Main ()
    {
        int N = 8;
     
        Console.WriteLine(countStr(N));
    }
}
 
// This code is contributed by AnkitRai01

Javascript

<script>
 
// Javascript implementation of the approach
 
var MOD = 1000000007;
 
// Function to return the count of
// all possible binary strings
function countStr(N)
{
 
    var dp = Array.from(Array(N+1), ()=> Array(3).fill(0));
 
    // Base cases
    dp[1][0] = 1;
    dp[1][1] = 1;
    dp[1][2] = 0;
 
    for (var i = 2; i <= N; i++) {
 
        // dp[i][j] is the number of possible
        // strings such that '1' just appeared
        // consecutively j times upto ith index
        dp[i][0] = (dp[i - 1][0] + dp[i - 1][1]
                    + dp[i - 1][2])
                   % MOD;
 
        // Taking previously calculated value
        dp[i][1] = dp[i - 1][0] % MOD;
        dp[i][2] = dp[i - 1][1] % MOD;
    }
 
    // Taking all the possible cases that
    // can appear at the Nth position
    var ans = (dp[N][0] + dp[N][1] + dp[N][2]) % MOD;
 
    return ans;
}
 
// Driver code
var N = 8;
document.write( countStr(N));
 
// This code is contributed by itsok.
</script>
Producción: 

149

 

Complejidad de tiempo: O(N)

Espacio Auxiliar: O(N)
 

Publicación traducida automáticamente

Artículo escrito por souradeep y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *