Dado un arreglo arr[] de N enteros, la tarea es encontrar el conteo de subarreglos con producto positivo.
Ejemplos:
Entrada: arr[] = {-1, 2, -2}
Salida: 2
Subarreglos con producto positivo son {2} y {-1, 2, -2}.
Entrada: arr[] = {5, -4, -3, 2, -5}
Salida: 7
Enfoque: El enfoque para encontrar los subarreglos con producto negativo se ha discutido en este artículo. Si cntNeg es el conteo de subarreglos de productos negativos y total es el conteo de todos los subarreglos posibles del arreglo dado, entonces el conteo de subarreglos de productos positivos será cntPos = total – cntNeg .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the count of // subarrays with negative product int negProdSubArr(int arr[], int n) { int positive = 1, negative = 0; for (int i = 0; i < n; i++) { // Replace current element with 1 // if it is positive else replace // it with -1 instead if (arr[i] > 0) arr[i] = 1; else arr[i] = -1; // Take product with previous element // to form the prefix product if (i > 0) arr[i] *= arr[i - 1]; // Count positive and negative elements // in the prefix product array if (arr[i] == 1) positive++; else negative++; } // Return the required count of subarrays return (positive * negative); } // Function to return the count of // subarrays with positive product int posProdSubArr(int arr[], int n) { // Total subarrays possible int total = (n * (n + 1)) / 2; // Count to subarrays with negative product int cntNeg = negProdSubArr(arr, n); // Return the count of subarrays // with positive product return (total - cntNeg); } // Driver code int main() { int arr[] = { 5, -4, -3, 2, -5 }; int n = sizeof(arr) / sizeof(arr[0]); cout << posProdSubArr(arr, n); return 0; }
Java
// Java implementation of the approach class GFG { // Function to return the count of // subarrays with negative product static int negProdSubArr(int arr[], int n) { int positive = 1, negative = 0; for (int i = 0; i < n; i++) { // Replace current element with 1 // if it is positive else replace // it with -1 instead if (arr[i] > 0) arr[i] = 1; else arr[i] = -1; // Take product with previous element // to form the prefix product if (i > 0) arr[i] *= arr[i - 1]; // Count positive and negative elements // in the prefix product array if (arr[i] == 1) positive++; else negative++; } // Return the required count of subarrays return (positive * negative); } // Function to return the count of // subarrays with positive product static int posProdSubArr(int arr[], int n) { // Total subarrays possible int total = (n * (n + 1)) / 2; // Count to subarrays with negative product int cntNeg = negProdSubArr(arr, n); // Return the count of subarrays // with positive product return (total - cntNeg); } // Driver code public static void main (String[] args) { int arr[] = { 5, -4, -3, 2, -5 }; int n = arr.length; System.out.println(posProdSubArr(arr, n)); } } // This code is contributed by AnkitRai01
Python3
# Python3 implementation of the approach # Function to return the count of # subarrays with negative product def negProdSubArr(arr, n): positive = 1 negative = 0 for i in range(n): # Replace current element with 1 # if it is positive else replace # it with -1 instead if (arr[i] > 0): arr[i] = 1 else: arr[i] = -1 # Take product with previous element # to form the prefix product if (i > 0): arr[i] *= arr[i - 1] # Count positive and negative elements # in the prefix product array if (arr[i] == 1): positive += 1 else: negative += 1 # Return the required count of subarrays return (positive * negative) # Function to return the count of # subarrays with positive product def posProdSubArr(arr, n): total = (n * (n + 1)) / 2; # Count to subarrays with negative product cntNeg = negProdSubArr(arr, n); # Return the count of subarrays # with positive product return (total - cntNeg); # Driver code arr = [5, -4, -3, 2, -5] n = len(arr) print(posProdSubArr(arr, n)) # This code is contributed by Mehul Bhutalia
C#
// C# implementation of the approach using System; class GFG { // Function to return the count of // subarrays with negative product static int negProdSubArr(int []arr, int n) { int positive = 1, negative = 0; for (int i = 0; i < n; i++) { // Replace current element with 1 // if it is positive else replace // it with -1 instead if (arr[i] > 0) arr[i] = 1; else arr[i] = -1; // Take product with previous element // to form the prefix product if (i > 0) arr[i] *= arr[i - 1]; // Count positive and negative elements // in the prefix product array if (arr[i] == 1) positive++; else negative++; } // Return the required count of subarrays return (positive * negative); } // Function to return the count of // subarrays with positive product static int posProdSubArr(int []arr, int n) { // Total subarrays possible int total = (n * (n + 1)) / 2; // Count to subarrays with negative product int cntNeg = negProdSubArr(arr, n); // Return the count of subarrays // with positive product return (total - cntNeg); } // Driver code public static void Main (String[] args) { int []arr = { 5, -4, -3, 2, -5 }; int n = arr.Length; Console.WriteLine(posProdSubArr(arr, n)); } } // This code is contributed by 29AjayKumar
Javascript
<script> // Javascript implementation of the approach // Function to return the count of // subarrays with negative product function negProdSubArr(arr, n) { let positive = 1, negative = 0; for (let i = 0; i < n; i++) { // Replace current element with 1 // if it is positive else replace // it with -1 instead if (arr[i] > 0) arr[i] = 1; else arr[i] = -1; // Take product with previous element // to form the prefix product if (i > 0) arr[i] *= arr[i - 1]; // Count positive and negative elements // in the prefix product array if (arr[i] == 1) positive++; else negative++; } // Return the required count of subarrays return (positive * negative); } // Function to return the count of // subarrays with positive product function posProdSubArr(arr, n) { // Total subarrays possible let total = parseInt((n * (n + 1)) / 2); // Count to subarrays with negative product let cntNeg = negProdSubArr(arr, n); // Return the count of subarrays // with positive product return (total - cntNeg); } // Driver code let arr = [ 5, -4, -3, 2, -5 ]; let n = arr.length; document.write(posProdSubArr(arr, n)); // This code is contributed by rishavmahato348. </script>
7
Complejidad de tiempo: O(n)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por Shivam Sharma 36 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA