Mayor número menor que N cuyos dígitos son números primos

Dado un número muy grande N (1 <= número de dígitos en N <= 10 5 ). La tarea es encontrar el mayor número X tal que X < N y cada dígito de X sea un número primo. 

Ejemplos: 

Input : N = 1000
Output : 777
777 is the largest number less than
1000 which have each digit as prime.

Input : N = 11
Output : 7

La idea es atravesar desde el dígito más a la izquierda del número N hasta el dígito más a la derecha de N. Compruebe si el dígito actual es primo o no. Si es primo, copie el dígito al número de salida en la posición del dígito correspondiente. Si no es primo, copie el mayor número primo menor que el dígito actual. 

Ahora considere si el dígito actual es ‘0’ o ‘1’. En ese caso, copie ‘7’ a la posición del dígito actual del número de salida. También muévase al dígito izquierdo adyacente del dígito actual y redúzcalo al número primo más grande menor que él. 
Una vez que reducimos cualquier dígito al número primo más grande menor que el dígito, copiamos ‘7’ al resto del dígito derecho en el número de salida.

A continuación se muestra la implementación de este enfoque: 

C++

// C++ program to find the largest number smaller
// than N whose all digits are prime.
#include <bits/stdc++.h>
using namespace std;
 
// Number is given as string.
char* PrimeDigitNumber(char N[], int size)
{
    char* ans = (char*)malloc(size * sizeof(char));
    int ns = 0;
 
    // We stop traversing digits, once it become
    // smaller than current number.
    // For that purpose we use small variable.
    int small = 0;
    int i;
 
    // Array indicating if index i (represents a
    // digit)  is prime or not.
    int p[] = { 0, 0, 1, 1, 0, 1, 0, 1, 0, 0 };
 
    // Store largest
    int prevprime[] = { 0, 0, 0, 2, 3, 3, 5, 5, 7, 7 };
 
    // If there is only one character, return
    // the largest prime less than the number
    if (size == 1) {
        ans[0] = prevprime[N[0] - '0'] + '0';
 
        ans[1] = '\0';
        return ans;
    }
 
    // If number starts with 1, return number
    // consisting of 7
    if (N[0] == '1') {
        for (int i = 0; i < size - 1; i++)
            ans[i] = '7';
 
        ans[size - 1] = '\0';
 
        return ans;
    }
 
    // Traversing each digit from right to left
    // Continue traversing till the number we
    // are forming will become less.
    for (i = 0; i < size && small == 0; i++) {
 
        // If digit is prime, copy it simply.
        if (p[N[i] - '0'] == 1) {
            ans[ns++] = N[i];
        } else {
 
            // If not prime, copy the largest prime
            // less than current number
            if (p[N[i] - '0'] == 0 &&
                prevprime[N[i] - '0'] != 0) {
                ans[ns++] = prevprime[N[i] - '0'] + '0';
                small = 1;
            }
 
            // If not prime, and there is no largest
            // prime less than current prime
            else if (p[N[i] - '0'] == 0 &&
                    prevprime[N[i] - '0'] == 0) {
                
                int j = i;
 
                // Make current digit as 7
                // Go left of the digit and make it largest
                // prime less than number. Continue do that
                // until we found a digit which has some
                // largest prime less than it
                while (j > 0 && p[N[j] - '0'] == 0 &&
                       prevprime[N[j] - '0'] == 0) {
                    ans[j] = N[j] = '7';
                    N[j - 1] = prevprime[N[j - 1] - '0'] + '0';
                    ans[j - 1] = N[j - 1];
                    small = 1;
                    j--;
                }
 
                i = ns;
            }
        }
    }
 
    // If the given number is itself a prime.
    if (small == 0) {
 
        // Make last digit as highest prime less
        // than given digit.
        if (prevprime[N[size - 1] - '0'] + '0' != '0')
            ans[size - 1] = prevprime[N[size - 1] - '0'] + '0';
 
        // If there is no highest prime less than
        // current digit.
        else {
            int j = size - 1;
            while (j > 0 && prevprime[N[j] - '0'] == 0) {
                ans[j] = N[j] = '7';
                N[j - 1] = prevprime[N[j - 1] - '0'] + '0';
                ans[j - 1] = N[j - 1];
                small = 1;
                j--;
            }
        }
    }
 
    // Once one digit become less than any digit of input
    // replace 7 (largest 1 digit prime) till the end of
    // digits of number
    for (; ns < size; ns++)
        ans[ns] = '7';
 
    ans[ns] = '\0';
 
    // If number include 0 in the beginning, ignore
    // them. Case like 2200
    int k = 0;
    while (ans[k] == '0')
        k++;
 
    return ans + k;
}
 
// Driver Program
int main()
{
    char N[] = "1000";
    int size = strlen(N);
    cout << PrimeDigitNumber(N, size) << endl;
    return 0;
}

Java

// Java program to find the largest number smaller
// than N whose all digits are prime.
import java.io.*;
class GFG
{
 
  // Number is given as string.
  static char[] PrimeDigitNumber(char N[], int size)
  {
    char[] ans = new char[size];  
    int ns = 0;
 
    // We stop traversing digits, once it become
    // smaller than current number.
    // For that purpose we use small variable.
    int small = 0;
    int i;
 
    // Array indicating if index i (represents a
    // digit)  is prime or not.
    int p[] = { 0, 0, 1, 1, 0, 1, 0, 1, 0, 0 };
 
    // Store largest
    int prevprime[] = { 0, 0, 0, 2, 3, 3, 5, 5, 7, 7 };
 
    // If there is only one character, return
    // the largest prime less than the number
    if (size == 1)
    {
      ans[0] = (char)(prevprime[N[0] - '0'] + '0');
 
      ans[1] = '\0';
      return ans;
    }
 
    // If number starts with 1, return number
    // consisting of 7
    if (N[0] == '1') {
      for (i = 0; i < size - 1; i++)
        ans[i] = '7';
 
      ans[size - 1] = '\0';
 
      return ans;
    }
 
    // Traversing each digit from right to left
    // Continue traversing till the number we
    // are forming will become less.
    for (i = 0; i < size && small == 0; i++) {
 
      // If digit is prime, copy it simply.
      if (p[N[i] - '0'] == 1) {
        ans[ns++] = N[i];
      } else {
 
        // If not prime, copy the largest prime
        // less than current number
        if (p[N[i] - '0'] == 0 &&
            prevprime[N[i] - '0'] != 0) {
          ans[ns++] = (char)(prevprime[N[i] - '0'] + '0');
          small = 1;
        }
 
        // If not prime, and there is no largest
        // prime less than current prime
        else if (p[N[i] - '0'] == 0 &&
                 prevprime[N[i] - '0'] == 0) {
 
          int j = i;
 
          // Make current digit as 7
          // Go left of the digit and make it largest
          // prime less than number. Continue do that
          // until we found a digit which has some
          // largest prime less than it
          while (j > 0 && p[N[j] - '0'] == 0 &&
                 prevprime[N[j] - '0'] == 0) {
            ans[j] = N[j] = '7';
            N[j - 1] = (char)(prevprime[N[j - 1] - '0'] + '0');
            ans[j - 1] = N[j - 1];
            small = 1;
            j--;
          }
 
          i = ns;
        }
      }
    }
 
    // If the given number is itself a prime.
    if (small == 0) {
 
      // Make last digit as highest prime less
      // than given digit.
      if (prevprime[N[size - 1] - '0'] + '0' != '0')
        ans[size - 1] = (char)(prevprime[N[size - 1] - '0'] + '0');
 
      // If there is no highest prime less than
      // current digit.
      else {
        int j = size - 1;
        while (j > 0 && prevprime[N[j] - '0'] == 0) {
          ans[j] = N[j] = '7';
          N[j - 1] = (char)(prevprime[N[j - 1] - '0'] + '0');
          ans[j - 1] = N[j - 1];
          small = 1;
          j--;
        }
      }
    }
 
    // Once one digit become less than any digit of input
    // replace 7 (largest 1 digit prime) till the end of
    // digits of number
    for (; ns < size; ns++)
      ans[ns] = '7';
 
    ans[ns] = '\0';
 
    // If number include 0 in the beginning, ignore
    // them. Case like 2200
    int k = 0;
    while (ans[k] == '0')
      k++;
 
    return ans;
  }
 
  // Driver Program
  public static void main (String[] args)
  {
    char[] N= "1000".toCharArray();
    int size=N.length;
    System.out.println(PrimeDigitNumber(N, size));
  }
}
 
// This code is contributed by avanitrachhadiya2155

Python3

# Python3 program to find the largest number smaller
# than N whose all digits are prime.
 
# Number is given as string.
def PrimeDigitNumber(N, size):
    ans = [""]*size
    ns = 0;
 
    # We stop traversing digits, once it become
    # smaller than current number.
    # For that purpose we use small variable.
    small = 0;
     
    # Array indicating if index i (represents a
    # digit)  is prime or not.
    p = [ 0, 0, 1, 1, 0, 1, 0, 1, 0, 0 ]
 
    # Store largest
    prevprime = [ 0, 0, 0, 2, 3, 3, 5, 5, 7, 7 ]
 
    # If there is only one character, return
    # the largest prime less than the number
    if (size == 1):
        ans[0] = prevprime[ord(N[0]) - ord('0')] + ord('0');
        ans[1] = '';
        return ''.join(ans);
    
    # If number starts with 1, return number
    # consisting of 7
    if (N[0] == '1'):
        for i in range(size - 1):
            ans[i] = '7'
        ans[size - 1] = '';
        return ''.join(ans)
 
    # Traversing each digit from right to left
    # Continue traversing till the number we
    # are forming will become less.
    i = 0
    while (i < size and small == 0):
 
        # If digit is prime, copy it simply.
        if (p[ord(N[i]) - ord('0')] == 1):
            ans[ns] = N[i]
            ns += 1
        else:
 
            # If not prime, copy the largest prime
            # less than current number
            if (p[ord(N[i]) - ord('0')] == 0 and
                prevprime[ord(N[i]) - ord('0')] != 0):
                ans[ns] = prevprime[ord(N[i]) - ord('0')] + ord('0');
                small = 1
                ns += 1
           
 
            # If not prime, and there is no largest
            # prime less than current prime
            elif (p[ord(N[i]) - ord('0')] == 0 and
                    prevprime[ord(N[i]) - ord('0')] == 0):         
                j = i;
 
                # Make current digit as 7
                # Go left of the digit and make it largest
                # prime less than number. Continue do that
                # until we found a digit which has some
                # largest prime less than it
                while (j > 0 and p[ord(N[j]) - ord('0')] == 0 and
                       prevprime[ord(N[j]) - ord('0')] == 0):
                    ans[j] = N[j] = '7';
                    N[j - 1] = prevprime[ord(N[j - 1]) - ord('0')] + ord('0');
                    ans[j - 1] = N[j - 1];
                    small = 1;
                    j -= 1              
                i = ns
        i += 1
 
    # If the given number is itself a prime.
    if (small == 0):
 
        # Make last digit as highest prime less
        # than given digit.
        if (prevprime[ord(N[size - 1]) - ord('0')] + ord('0') != ord('0')):
            ans[size - 1] = prevprime[ord(N[size - 1]) - ord('0')] + ord('0');
 
        # If there is no highest prime less than
        # current digit.
        else :
            j = size - 1;
            while (j > 0 and prevprime[ord(N[j]) - ord('0')] == 0):
                ans[j] = N[j] = '7';
                N[j - 1] = prevprime[ord(N[j - 1]) - ord('0')] + ord('0');
                ans[j - 1] = N[j - 1];
                small = 1;
                j -= 1
 
    # Once one digit become less than any digit of input
    # replace 7 (largest 1 digit prime) till the end of
    # digits of number
    while(ns < size):
        ans[ns] = '7'
        ns += 1
 
    ans[ns] = '';
 
    # If number include 0 in the beginning, ignore
    # them. Case like 2200
    k = 0;
    while (ans[k] == '0'):
        k += 1
    return (ans + k)
 
# Driver Program
if __name__ == "__main__":
 
    N = "1000";
    size = len(N);
    print(PrimeDigitNumber(N, size))
     
    # This code is contributed by chitranayal.

C#

// C# program to find the largest number smaller
// than N whose all digits are prime.
using System;
 
class GFG{
     
// Number is given as string.
static char[] PrimeDigitNumber(char[] N, int size)
{
    char[] ans = new char[size];  
    int ns = 0;
     
    // We stop traversing digits, once it become
    // smaller than current number.
    // For that purpose we use small variable.
    int small = 0;
    int i;
     
    // Array indicating if index i (represents a
    // digit)  is prime or not.
    int[] p = { 0, 0, 1, 1, 0, 1, 0, 1, 0, 0 };
     
    // Store largest
    int[] prevprime = { 0, 0, 0, 2, 3, 3, 5, 5, 7, 7 };
     
    // If there is only one character, return
    // the largest prime less than the number
     
    if (size == 1)
    {
        ans[0] = (char)(prevprime[N[0] - '0'] + '0');
        ans[1] = '\0';
        return ans;
    }
     
    // If number starts with 1, return number
    // consisting of 7
    if (N[0] == '1')
    {
        for (i = 0; i < size - 1; i++)
            ans[i] = '7';
         
        ans[size - 1] = '\0';
         
        return ans;
    }
     
    // Traversing each digit from right to left
    // Continue traversing till the number we
    // are forming will become less.
    for(i = 0; i < size && small == 0; i++)
    {
     
        // If digit is prime, copy it simply.
        if (p[N[i] - '0'] == 1)
        {
            ans[ns++] = N[i];
        }
        else
        {
             
            // If not prime, copy the largest prime
            // less than current number
            if (p[N[i] - '0'] == 0 &&
                prevprime[N[i] - '0'] != 0)
            {
                ans[ns++] = (char)(prevprime[N[i] - '0'] + '0');
                small = 1;
            }
                 
            // If not prime, and there is no largest
            // prime less than current prime
            else if (p[N[i] - '0'] == 0 &&
                     prevprime[N[i] - '0'] == 0)
            {
             
                int j = i;
                 
                // Make current digit as 7
                // Go left of the digit and make it largest
                // prime less than number. Continue do that
                // until we found a digit which has some
                // largest prime less than it
                while (j > 0 && p[N[j] - '0'] == 0 &&
                        prevprime[N[j] - '0'] == 0)
                {
                    ans[j] = N[j] = '7';
                    N[j - 1] = (char)(
                        prevprime[N[j - 1] - '0'] + '0');
                    ans[j - 1] = N[j - 1];
                    small = 1;
                    j--;
                }
                i = ns;
            }
        }
    }
     
    // If the given number is itself a prime.
    if (small == 0)
    {
     
        // Make last digit as highest prime less
        // than given digit.
        if (prevprime[N[size - 1] - '0'] + '0' != '0')
            ans[size - 1] = (char)(
                prevprime[N[size - 1] - '0'] + '0');
         
        // If there is no highest prime less than
        // current digit.
        else
        {
            int j = size - 1;
            while (j > 0 && prevprime[N[j] - '0'] == 0)
            {
                ans[j] = N[j] = '7';
                N[j - 1] = (char)(
                    prevprime[N[j - 1] - '0'] + '0');
                ans[j - 1] = N[j - 1];
                small = 1;
                j--;
            }
        }
    }
     
    // Once one digit become less than any digit of input
    // replace 7 (largest 1 digit prime) till the end of
    // digits of number
    for(; ns < size; ns++)
        ans[ns] = '7';
     
    ans[ns] = '\0';
     
    // If number include 0 in the beginning, ignore
    // them. Case like 2200
    int k = 0;
    while (ans[k] == '0')
        k++;
     
    return ans;
}
 
// Driver Code
static public void Main()
{
    char[] N = "1000".ToCharArray();
    int size = N.Length;
     
    Console.WriteLine(PrimeDigitNumber(N, size));
}
}
 
// This code is contributed by rag2127

Javascript

<script>
// Javascript program to find the largest number smaller
// than N whose all digits are prime.
 
// Number is given as string.
function PrimeDigitNumber(N,size)
{
    let ans = new Array(size); 
    let ns = 0;
  
    // We stop traversing digits, once it become
    // smaller than current number.
    // For that purpose we use small variable.
    let small = 0;
    let i;
  
    // Array indicating if index i (represents a
    // digit)  is prime or not.
    let p = [ 0, 0, 1, 1, 0, 1, 0, 1, 0, 0 ];
  
    // Store largest
    let prevprime = [ 0, 0, 0, 2, 3, 3, 5, 5, 7, 7 ];
  
    // If there is only one character, return
    // the largest prime less than the number
    if (size == 1)
    {
      ans[0] = String.fromCharCode(prevprime[N[0].charCodeAt(0) - '0'.charCodeAt(0)] + '0'.charCodeAt(0));
  
      ans[1] = '\0';
      return ans;
    }
  
    // If number starts with 1, return number
    // consisting of 7
    if (N[0] == '1') {
      for (i = 0; i < size - 1; i++)
        ans[i] = '7';
  
      ans[size - 1] = '\0';
  
      return ans;
    }
  
    // Traversing each digit from right to left
    // Continue traversing till the number we
    // are forming will become less.
    for (i = 0; i < size && small == 0; i++) {
  
      // If digit is prime, copy it simply.
      if (p[N[i].charCodeAt(0) - '0'.charCodeAt(0)] == 1) {
        ans[ns++] = N[i];
      } else {
  
        // If not prime, copy the largest prime
        // less than current number
        if (p[N[i] - '0'] == 0 &&
            prevprime[N[i].charCodeAt(0) - '0'.charCodeAt(0)] != 0) {
          ans[ns++] = String.fromCharCode(prevprime[N[i].charCodeAt(0) - '0'.charCodeAt(0)] + '0'.charCodeAt(0));
          small = 1;
        }
  
        // If not prime, and there is no largest
        // prime less than current prime
        else if (p[N[i].charCodeAt(0) - '0'.charCodeAt(0)] == 0 &&
                 prevprime[N[i].charCodeAt(0) - '0'.charCodeAt(0)] == 0) {
  
          let j = i;
  
          // Make current digit as 7
          // Go left of the digit and make it largest
          // prime less than number. Continue do that
          // until we found a digit which has some
          // largest prime less than it
          while (j > 0 && p[N[j].charCodeAt(0) - '0'.charCodeAt(0)] == 0 &&
                 prevprime[N[j].charCodeAt(0) - '0'.charCodeAt(0)] == 0) {
            ans[j] = N[j] = '7';
            N[j - 1] = String.fromCharCode(prevprime[N[j - 1].charCodeAt(0) - '0'.charCodeAt(0)] + '0'.charCodeAt(0));
            ans[j - 1] = N[j - 1];
            small = 1;
            j--;
          }
  
          i = ns;
        }
      }
    }
  
    // If the given number is itself a prime.
    if (small == 0) {
  
      // Make last digit as highest prime less
      // than given digit.
      if (prevprime[N[size - 1].charCodeAt(0) - '0'.charCodeAt(0)] + '0'.charCodeAt(0) != '0'.charCodeAt(0))
        ans[size - 1] = String.fromCharCode(prevprime[N[size - 1].charCodeAt(0) - '0'.charCodeAt(0)] + '0'.charCodeAt(0));
  
      // If there is no highest prime less than
      // current digit.
      else {
        let j = size - 1;
        while (j > 0 && prevprime[N[j].charCodeAt(0) - '0'.charCodeAt(0)] == 0) {
          ans[j] = N[j] = '7';
          N[j - 1] = String.fromCharCode(prevprime[N[j - 1].charCodeAt(0) - '0'.charCodeAt(0)] + '0'.charCodeAt(0));
          ans[j - 1] = N[j - 1];
          small = 1;
          j--;
        }
      }
    }
  
    // Once one digit become less than any digit of input
    // replace 7 (largest 1 digit prime) till the end of
    // digits of number
    for (; ns < size; ns++)
      ans[ns] = '7';
  
    ans[ns] = '\0';
  
    // If number include 0 in the beginning, ignore
    // them. Case like 2200
    let k = 0;
    while (ans[k] == '0')
      k++;
  
    return ans.join("");
}
 
// Driver Program
let N= "1000".split("");
let size=N.length;
document.write(PrimeDigitNumber(N, size).join(""));
 
// This code is contributed by ab2127
</script>

Producción: 

777

Este artículo es una contribución de Anuj Chauhan (anuj0503) . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *