Dada una array de elementos donde cada elemento de la array representa el grado ( 0 <= a[i] <= 359 ) en el que ya hay un corte en un círculo. La tarea es encontrar el número mínimo de cortes adicionales requeridos para hacer segmentos circulares del mismo tamaño.
Ejemplos :
Input : arr[] = { 0, 2 } Output : 178 Input : arr[] = { 30, 60, 180 } Output : 9
Enfoque : una forma eficiente de resolver el problema anterior es encontrar el gcd de todas las diferencias consecutivas en los ángulos. Este mcd es el ángulo máximo de un segmento circular y luego el número de segmentos será 360/mcdObtenido. Pero, ya hay N cortes. entonces los cortes adicionales serán (360/gcdObtained) – N .
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP program to find the minimum number // of additional cuts required to make // circle segments equal sized #include <bits/stdc++.h> using namespace std; // Function to find the minimum number // of additional cuts required to make // circle segments are equal sized int minimumCuts(int a[], int n) { // Sort the array sort(a, a + n); // Initial gcd value int gcd = a[1] - a[0]; int s = gcd; for (int i = 2; i < n; i++) { gcd = __gcd(gcd, a[i] - a[i - 1]); s += a[i] - a[i - 1]; } // Including the last segment if (360 - s > 0) gcd = __gcd(gcd, 360 - s); return (360 / gcd) - n; } // Driver code int main() { int arr[] = { 30, 60, 180 }; int n = sizeof(arr) / sizeof(arr[0]); cout << minimumCuts(arr, n); return 0; }
Java
// Java program to find the minimum // number of additional cuts required // to make circle segments equal sized import java.util.Arrays; class GFG { // Recursive function to // return gcd of two nos static int findgcd(int a, int b) { if (b == 0) return a; return findgcd(b, a % b); } // Function to find the minimum number // of additional cuts required to make // circle segments are equal sized static int minimumCuts(int a[], int n) { // Sort the array Arrays.sort(a); // Initial gcd value int gcd = a[1] - a[0]; int s = gcd; for (int i = 2; i < n; i++) { gcd = findgcd(gcd, a[i] - a[i - 1]); s += a[i] - a[i - 1]; } // Including the last segment if (360 - s > 0) gcd = findgcd(gcd, 360 - s); return (360 / gcd) - n; } // Driver code public static void main(String[] args) { int[] arr = new int[] { 30, 60, 180 }; int n = arr.length; System.out.println(minimumCuts(arr, n)); } } // This code is contributed by mits
Python 3
# Python 3 program to find the minimum number # of additional cuts required to make # circle segments equal sized import math # Function to find the minimum number # of additional cuts required to make # circle segments are equal sized def minimumCuts(a, n): # Sort the array a.sort() # Initial gcd value gcd = a[1] - a[0] s = gcd for i in range(2,n) : gcd = math.gcd(gcd, a[i] - a[i - 1]) s += a[i] - a[i - 1] # Including the last segment if (360 - s > 0): gcd = math.gcd(gcd, 360 - s) return (360 // gcd) - n # Driver code if __name__ == "__main__": arr = [ 30, 60, 180 ] n = len(arr) print(minimumCuts(arr, n))
C#
// C# program to find the minimum // number of additional cuts required // to make circle segments equal sized using System; class GFG { // Recursive function to // return gcd of two nos static int findgcd(int a, int b) { if (b == 0) return a; return findgcd(b, a % b); } // Function to find the minimum number // of additional cuts required to make // circle segments are equal sized static int minimumCuts(int []a, int n) { // Sort the array Array.Sort(a); // Initial gcd value int gcd = a[1] - a[0]; int s = gcd; for (int i = 2; i < n; i++) { gcd = findgcd(gcd, a[i] - a[i - 1]); s += a[i] - a[i - 1]; } // Including the last segment if (360 - s > 0) gcd = findgcd(gcd, 360 - s); return (360 / gcd) - n; } // Driver Code static void Main() { int[] arr = new int[] { 30, 60, 180 }; int n = arr.Length; Console.WriteLine(minimumCuts(arr, n)); } // This code is contributed by ANKITRAI1 }
PHP
<?php // PHP program to find the minimum // number of additional cuts required // to make circle segments equal sized // Recursive function to return // gcd of two nos function findgcd($a, $b) { if ($b == 0) return $a; return findgcd($b, $a % $b); } // Function to find the minimum number // of additional cuts required to make // circle segments are equal sized function minimumCuts($a, $n) { // Sort the array sort($a); // Initial gcd value $gcd = $a[1] - $a[0]; $s = $gcd; for ($i = 2; $i < $n; $i++) { $gcd = findgcd($gcd, $a[$i] - $a[$i - 1]); $s += $a[$i] - $a[$i - 1]; } // Including the last segment if (360 - $s > 0) $gcd = findgcd($gcd, 360 - $s); return (360 / $gcd) - $n; } // Driver Code $arr = array(30, 60, 180); $n = sizeof($arr); echo (minimumCuts($arr, $n)); // This code is contributed by ajit ?>
Javascript
<script> // javascript program to find the minimum // number of additional cuts required // to make circle segments equal sized // Recursive function to // return gcd of two nos function findgcd(a , b) { if (b == 0) return a; return findgcd(b, a % b); } // Function to find the minimum number // of additional cuts required to make // circle segments are equal sized function minimumCuts(a, n) { // Sort the array a.sort(); // Initial gcd value var gcd = a[1] - a[0]; var s = gcd; for (i = 2; i < n; i++) { gcd = findgcd(gcd, a[i] - a[i - 1]); s += a[i] - a[i - 1]; } // Including the last segment if (360 - s > 0) gcd = findgcd(gcd, 360 - s); return (360 / gcd) - n; } // Driver code var arr = [ 30, 60, 180 ]; var n = arr.length; document.write(minimumCuts(arr, n)); // This code is contributed by aashish1995 </script>
9
Complejidad de tiempo: O (nlogn), ya que el mejor algoritmo de ordenación tarda (nlogn) veces en ordenar la array.
Espacio Auxiliar: O(1), ya que no se ha ocupado ningún espacio extra.
Publicación traducida automáticamente
Artículo escrito por pawan_asipu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA