Número mínimo de monedas que pueden generar todos los valores en el rango dado

Dado un número entero N , la tarea es encontrar la cantidad mínima de monedas necesarias para crear todos los valores en el rango [1, N] .

Ejemplos: 

Input: N = 5
Output: 3
The coins {1, 2, 4} can be used to generate 
all the values in the range [1, 5].
1 = 1
2 = 2
3 = 1 + 2
4 = 4
5 = 1 + 4

Input: N = 10
Output: 4

Enfoque: El problema es una variación del problema de cambio de moneda, se puede resolver con la ayuda de números binarios. En el ejemplo anterior, se puede ver que para crear todos los valores entre 1 y 10 , se requiere el denominador {1, 2, 4, 8} que se puede reescribir como {2 0 , 2 1 , 2 2 , 2 3 } . El número mínimo de monedas para crear todos los valores para un valor N se puede calcular utilizando el siguiente algoritmo. 

// A list which contains the sum of all previous 
// bit values including that bit value
list = [ 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023]
    // range = N
    for value in  list:
        if(value >= N):
            print(list.index(value) + 1)
            break

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int index(vector<int> vec, int value)
{
    vector<int>::iterator it;
    it = find(vec.begin(), vec.end(), value);
    return (it - vec.begin());
}
 
// Function to return the count
// of minimum coins required
int findCount(int N)
{
 
    // To store the required sequence
    vector<int> list;
    int sum = 0;
    int i;
 
    // Creating list of the sum of all
    // previous bit values including
    // that bit value
    for (i = 0; i < 20; i++) {
        sum += pow(2, i);
        list.push_back(sum);
    }
 
    for (i = 0; i < 20; i++) {
        if (list[i] >= N) {
            return (index(list, list[i]) + 1);
        }
    }
}
 
// Driver Code
int main()
{
    int N = 10;
    cout << findCount(N) << endl;
    return 0;
}
 
// This code is contributed by kanugargng

Java

// Java implementation of the approach
import java.util.*;
 
class GFG {
 
    // Function to return the count
    // of minimum coins required
    static int findCount(int N)
    {
        Vector list = new Vector();
        int sum = 0;
        int i;
 
        // Creating list of the sum of all
        // previous bit values including
        // that bit value
        for (i = 0; i < 20; i++) {
            sum += Math.pow(2, i);
            list.add(sum);
        }
 
        for (i = 0; i < 20; i++) {
            if ((int)list.get(i) >= N)
                return (list.indexOf(list.get(i)) + 1);
        }
        return 0;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 10;
 
        // Function Call to find count
        System.out.println(findCount(N));
    }
}
 
// This code is contributed by AnkitRai01

Python3

# Python3 implementation of the approach
 
# Function to return the count
# of minimum coins required
 
 
def findCount(N):
 
    # To store the required sequence
    list = []
    sum = 0
 
    # Creating list of the sum of all
    # previous bit values including
    # that bit value
    for i in range(0, 20):
        sum += 2**i
        list.append(sum)
 
    for value in list:
        if(value >= N):
            return (list.index(value) + 1)
 
 
# Driver code
N = 10
print(findCount(N))

C#

// C# implementation of the above approach
using System;
using System.Collections.Generic;
 
class GFG {
 
    // Function to return the count
    // of minimum coins required
    static int findCount(int N)
    {
        List<int> list = new List<int>();
        int sum = 0;
        int i;
 
        // Creating list of the sum of all
        // previous bit values including
        // that bit value
 
        for (i = 0; i < 20; i++) {
            sum += (int)Math.Pow(2, i);
            list.Add(sum);
        }
 
        for (i = 0; i < 20; i++) {
            if ((int)list[i] >= N)
                return (i + 1);
        }
        return 0;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int N = 10;
        Console.WriteLine(findCount(N));
    }
}
 
// This code is contributed by PrinciRaj1992

Javascript

<script>
    // Javascript implementation of the above approach
     
    // Function to return the count
    // of minimum coins required
    function findCount(N)
    {
        let list = [];
        let sum = 0;
        let i;
  
        // Creating list of the sum of all
        // previous bit values including
        // that bit value
  
        for (i = 0; i < 20; i++) {
            sum += parseInt(Math.pow(2, i), 10);
            list.push(sum);
        }
  
        for (i = 0; i < 20; i++) {
            if (list[i] >= N)
                return (i + 1);
        }
        return 0;
    }
     
    let N = 10;
      document.write(findCount(N));
     
    // This code is contributed by rameshtravel07.
</script>
Producción

4

Complejidad de tiempo: O(n)

Enfoque eficiente: la cantidad mínima de monedas necesarias para crear todos los valores en el rango [1, N] será log(N)/log(2) + 1.

A continuación se muestra la implementación del enfoque anterior:

C++14

// C++ program to find minimum number of coins
#include<bits/stdc++.h>
using namespace std;
 
// Function to find minimum number of coins
int findCount(int n)
{
    return log(n)/log(2)+1;
}
 
// Driver code
int main()
{
    int N = 10;
    cout << findCount(N) << endl;
    return 0;
}

Java

// Java program to find minimum number of coins
class GFG{
     
// Function to find minimum number of coins
static int findCount(int n)
{
    return (int)(Math.log(n) /
                 Math.log(2)) + 1;
}
 
// Driver code
public static void main(String[] args)
{
    int N = 10;
     
    System.out.println(findCount(N));
}
}
 
// This code is contributed by divyeshrabadiya07

Python3

# Python3 program to find minimum number of coins
import math
 
# Function to find minimum number of coins
def findCount(n):
     
    return int(math.log(n, 2)) + 1
     
# Driver code
N = 10
 
print(findCount(N))
 
# This code is contributed by divyesh072019

C#

// C# program to find minimum number of coins
using System;
 
class GFG{
 
  // Function to find minimum number of coins
  static int findCount(int n)
  {
    return (int)(Math.Log(n) /
                 Math.Log(2)) + 1;
  }
 
  // Driver code
  public static void Main()
  {
    int N = 10;
 
    Console.Write(findCount(N));
  }
}
 
// This code is contributed by rutvik_56.

Javascript

<script>
    // Javascript program to find minimum number of coins
     
    // Function to find minimum number of coins
    function findCount(n)
    {
        return parseInt(Math.log(n)/Math.log(2), 10)+1;
    }
     
    let N = 10;
    document.write(findCount(N));
         
</script>
Producción

4

Complejidad del tiempo: O(log(n))
 

Publicación traducida automáticamente

Artículo escrito por pandeyrockz y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *