Número mínimo de movimientos dados requeridos para hacer que N sea divisible por 25

Dado un número N (1 ≤ N ≤ 10 18 ) sin ceros a la izquierda. La tarea es encontrar el número mínimo de movimientos necesarios para hacer que N sea divisible por 25 . En cada movimiento, uno puede intercambiar dos dígitos adyacentes y asegurarse de que en cualquier momento el número no debe contener ceros a la izquierda. Si no es posible hacer que N sea divisible por 25, imprima -1 .
Ejemplos: 
 

Entrada: N = 7560 
Salida:
intercambio (5, 6) y N se convierte en 7650, que es divisible por 25
Entrada: N = 100 
Salida:
 

Enfoque: Iterar sobre todos los pares de dígitos en el número. Deje que el primer dígito del par esté en la posición i y el segundo en la posición j. Coloquemos estos dígitos en las dos últimas posiciones del número. Pero, ahora el número puede contener un cero inicial. Encuentre el dígito distinto de cero más a la izquierda y muévalo a la primera posición. Luego, si el número actual es divisible por 25, intente actualizar la respuesta con el número de intercambios. El número mínimo de intercambios en todas estas operaciones es la respuesta requerida.
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum number
// of moves required to make n divisible
// by 25
int minMoves(long long n)
{
 
    // Convert number into string
    string s = to_string(n);
 
    // To store required answer
    int ans = INT_MAX;
 
    // Length of the string
    int len = s.size();
 
    // To check all possible pairs
    for (int i = 0; i < len; ++i) {
        for (int j = 0; j < len; ++j) {
            if (i == j)
                continue;
 
            // Make a duplicate string
            string t = s;
            int cur = 0;
 
            // Number of swaps required to place
            // ith digit in last position
            for (int k = i; k < len - 1; ++k) {
                swap(t[k], t[k + 1]);
                ++cur;
            }
 
            // Number of swaps required to place
            // jth digit in 2nd last position
            for (int k = j - (j > i); k < len - 2; ++k) {
                swap(t[k], t[k + 1]);
                ++cur;
            }
 
            // Find first non zero digit
            int pos = -1;
            for (int k = 0; k < len; ++k) {
                if (t[k] != '0') {
                    pos = k;
                    break;
                }
            }
 
            // Place first non zero digit
            // in the first position
            for (int k = pos; k > 0; --k) {
                swap(t[k], t[k - 1]);
                ++cur;
            }
 
            // Convert string to number
            long long nn = atoll(t.c_str());
 
            // If this number is divisible by 25
            // then cur is one of the possible answer
            if (nn % 25 == 0)
                ans = min(ans, cur);
        }
    }
 
    // If not possible
    if (ans == INT_MAX)
        return -1;
 
    return ans;
}
 
// Driver code
int main()
{
    long long n = 509201;
    cout << minMoves(n);
    return 0;
}

Java

// Java implementation of the approach
class GFG
{
     
    // Function to return the minimum number
    // of moves required to make n divisible
    // by 25
    static int minMoves(int n)
    {
     
        // Convert number into string
        String s = Integer.toString(n);
         
        // To store required answer
        int ans = Integer.MAX_VALUE;
     
        // Length of the string
        int len = s.length();
     
        // To check all possible pairs
        for (int i = 0; i < len; ++i)
        {
            for (int j = 0; j < len; ++j)
            {
                if (i == j)
                    continue;
     
                // Make a duplicate string
                char t [] = s.toCharArray();
                int cur = 0;
     
                // Number of swaps required to place
                // ith digit in last position
                for (int k = i; k < len - 1; ++k)
                {
                    swap(t, k, k + 1);
                    ++cur;
                }
     
                // Number of swaps required to place
                // jth digit in 2nd last position
                for (int k = j - ((j > i)? 1 : 0 ); k < len - 2; ++k)
                {
                    swap(t, k, k + 1);
                    ++cur;
                }
     
                // Find first non zero digit
                int pos = -1;
                for (int k = 0; k < len; ++k)
                {
                    if (t[k] != '0')
                    {
                        pos = k;
                        break;
                    }
                }
     
                // Place first non zero digit
                // in the first position
                for (int k = pos; k > 0; --k)
                {
                    swap(t, k, k - 1);
                    ++cur;
                }
     
                // Convert string to number
                long nn = Integer.parseInt(String.valueOf(t));
     
                // If this number is divisible by 25
                // then cur is one of the possible answer
                if (nn % 25 == 0)
                    ans = Math.min(ans, cur);
            }
        }
     
        // If not possible
        if (ans == Integer.MAX_VALUE)
            return -1;
     
        return ans;
    }
     
    static void swap(char t [], int i, int j)
    {
        char temp = t[i];
        t[i] = t[j];
        t[j] = temp;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 509201;
        System.out.println(minMoves(n));
    }
}
 
// This code is contributed by Archana_Kumari

Python3

# Python3 implementation of the approach
import sys
 
# Function to return the minimum number
# of moves required to make n divisible
# by 25
def minMoves(n):
 
    # Convert number into string
    s = str(n);
 
    # To store required answer
    ans = sys.maxsize;
 
    # Length of the string
    len1 = len(s);
 
    # To check all possible pairs
    for i in range(len1):
        for j in range(len1):
            if (i == j):
                continue;
 
            # Make a duplicate string
            t = s;
            cur = 0;
 
            # Number of swaps required to place
            # ith digit in last position
            list1 = list(t);
            for k in range(i,len1 - 1):
                e = list1[k];
                list1[k] = list1[k + 1];
                list1[k + 1] = e;
                cur += 1;
            t = ''.join(list1);
 
            # Number of swaps required to place
            # jth digit in 2nd last position
            list1 = list(t);
            for k in range(j - (j > i),len1 - 2):
                e = list1[k];
                list1[k] = list1[k + 1];
                list1[k + 1] = e;
                cur += 1;
            t = ''.join(list1);
 
            # Find first non zero digit
            pos = -1;
            for k in range(len1):
                if (t[k] != '0'):
                    pos = k;
                    break;
 
            # Place first non zero digit
            # in the first position
            for k in range(pos,0,-1):
                e = list1[k];
                list1[k] = list1[k + 1];
                list1[k + 1] = e;
                cur += 1;
            t = ''.join(list1);
 
 
            # Convert string to number
            nn = int(t);
 
            # If this number is divisible by 25
            # then cur is one of the possible answer
            if (nn % 25 == 0):
                ans = min(ans, cur);
 
    # If not possible
    if (ans == sys.maxsize):
        return -1;
 
    return ans;
 
# Driver code
n = 509201;
print(minMoves(n));
 
# This code is contributed
# by chandan_jnu

C#

// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the minimum number
    // of moves required to make n divisible
    // by 25
    static int minMoves(int n)
    {
     
        // Convert number into string
        string s = n.ToString();
         
        // To store required answer
        int ans = Int32.MaxValue;
     
        // Length of the string
        int len = s.Length;
     
        // To check all possible pairs
        for (int i = 0; i < len; ++i)
        {
            for (int j = 0; j < len; ++j)
            {
                if (i == j)
                    continue;
     
                // Make a duplicate string
                char[] t = s.ToCharArray();
                int cur = 0;
     
                // Number of swaps required to place
                // ith digit in last position
                for (int k = i; k < len - 1; ++k)
                {
                    swap(t, k, k + 1);
                    ++cur;
                }
     
                // Number of swaps required to place
                // jth digit in 2nd last position
                for (int k = j - ((j > i)? 1 : 0 ); k < len - 2; ++k)
                {
                    swap(t, k, k + 1);
                    ++cur;
                }
     
                // Find first non zero digit
                int pos = -1;
                for (int k = 0; k < len; ++k)
                {
                    if (t[k] != '0')
                    {
                        pos = k;
                        break;
                    }
                }
     
                // Place first non zero digit
                // in the first position
                for (int k = pos; k > 0; --k)
                {
                    swap(t, k, k - 1);
                    ++cur;
                }
     
                // Convert string to number
                int nn = Convert.ToInt32(new String(t));
     
                // If this number is divisible by 25
                // then cur is one of the possible answer
                if (nn % 25 == 0)
                    ans = Math.Min(ans, cur);
            }
        }
     
        // If not possible
        if (ans == Int32.MaxValue)
            return -1;
     
        return ans;
    }
     
    static void swap(char []t, int i, int j)
    {
        char temp = t[i];
        t[i] = t[j];
        t[j] = temp;
    }
     
    // Driver code
    static void Main()
    {
        int n = 509201;
        Console.WriteLine(minMoves(n));
    }
}
 
// This code is contributed by mits

PHP

<?php
// PHP implementation of the approach
 
// Function to return the minimum number
// of moves required to make n divisible
// by 25
function minMoves($n)
{
 
    // Convert number into string
    $s = strval($n);
 
    // To store required answer
    $ans = PHP_INT_MAX;
 
    // Length of the string
    $len = strlen($s);
 
    // To check all possible pairs
    for ($i = 0; $i < $len; ++$i)
    {
        for ($j = 0; $j < $len; ++$j)
        {
            if ($i == $j)
                continue;
 
            // Make a duplicate string
            $t = $s;
            $cur = 0;
 
            // Number of swaps required to place
            // ith digit in last position
            for ($k = $i;$k < $len - 1; ++$k)
            {
                $e=$t[$k];
                $t[$k]=$t[$k + 1];
                $t[$k+1]=$e;
                ++$cur;
            }
 
            // Number of swaps required to place
            // jth digit in 2nd last position
            for ($k = $j - ($j > $i);
                 $k < $len - 2; ++$k)
            {
                $e = $t[$k];
                $t[$k] = $t[$k + 1];
                $t[$k + 1] = $e;
                ++$cur;
            }
 
            // Find first non zero digit
            $pos = -1;
            for ($k = 0; $k < $len; ++$k)
            {
                if ($t[$k] != '0')
                {
                    $pos = $k;
                    break;
                }
            }
 
            // Place first non zero digit
            // in the first position
            for ($k = $pos; $k > 0; --$k)
            {
                $e = $t[$k];
                $t[$k] = $t[$k + 1];
                $t[$k + 1] = $e;
                ++$cur;
            }
 
            // Convert string to number
            $nn = intval($t);
 
            // If this number is divisible by 25
            // then cur is one of the possible answer
            if ($nn % 25 == 0)
                $ans = min($ans, $cur);
        }
    }
 
    // If not possible
    if ($ans == PHP_INT_MAX)
        return -1;
 
    return $ans;
}
 
// Driver code
$n = 509201;
echo minMoves($n);
 
// This code is contributed
// by chandan_jnu
?>

Javascript

<script>
    // Javascript implementation of the approach
     
    // Function to return the minimum number
    // of moves required to make n divisible
    // by 25
    function minMoves(n)
    {
       
        // Convert number into string
        let s = n.toString();
           
        // To store required answer
        let ans = Number.MAX_VALUE;
       
        // Length of the string
        let len = s.length;
       
        // To check all possible pairs
        for (let i = 0; i < len; ++i)
        {
            for (let j = 0; j < len; ++j)
            {
                if (i == j)
                    continue;
       
                // Make a duplicate string
                let t = s.split('');
                let cur = 0;
       
                // Number of swaps required to place
                // ith digit in last position
                for (let k = i; k < len - 1; ++k)
                {
                    swap(t, k, k + 1);
                    ++cur;
                }
       
                // Number of swaps required to place
                // jth digit in 2nd last position
                for (let k = j - ((j > i)? 1 : 0 ); k < len - 2; ++k)
                {
                    swap(t, k, k + 1);
                    ++cur;
                }
       
                // Find first non zero digit
                let pos = -1;
                for (let k = 0; k < len; ++k)
                {
                    if (t[k] != '0')
                    {
                        pos = k;
                        break;
                    }
                }
       
                // Place first non zero digit
                // in the first position
                for (let k = pos; k > 0; --k)
                {
                    swap(t, k, k - 1);
                    ++cur;
                }
       
                // Convert string to number
                let nn = parseInt(t.join(""));
       
                // If this number is divisible by 25
                // then cur is one of the possible answer
                if (nn % 25 == 0)
                    ans = Math.min(ans, cur);
            }
        }
       
        // If not possible
        if (ans == Number.MAX_VALUE)
            return -1;
       
        return ans;
    }
       
    function swap(t, i, j)
    {
        let temp = t[i];
        t[i] = t[j];
        t[j] = temp;
    }
     
    let n = 509201;
      document.write(minMoves(n));
 
// This code is contributed by mukesh07.
</script>
Producción: 

4

 

Complejidad de tiempo: O(|n| 3 )

Espacio Auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por pawan_asipu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *