Mayor número palindrómico en una array

Dada una array de enteros no negativos arr[] . La tarea es encontrar el número más grande en la array que es palíndromo. Si no existe tal número, imprima -1 .

Ejemplos: 

Entrada: arr[] = {1, 232, 54545, 999991}; 
Salida: 54545

Entrada: arr[] = {1, 2, 3, 4, 5, 50}; 
Salida:
 

Método 1:  

  • Ordene la array en orden ascendente.
  • Comience a atravesar la array desde el final.
  • El primer número que es un palíndromo es la respuesta requerida.
  • Si no se encuentra ningún número palindrómico, imprima -1

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if n is palindrome
bool isPalindrome(int n)
{
    // Find the appropriate divisor
    // to extract the leading digit
    int divisor = 1;
    while (n / divisor >= 10)
        divisor *= 10;
 
    while (n != 0) {
        int leading = n / divisor;
        int trailing = n % 10;
 
        // If first and last digits are
        // not same then return false
        if (leading != trailing)
            return false;
 
        // Removing the leading and trailing
        // digits from the number
        n = (n % divisor) / 10;
 
        // Reducing divisor by a factor
        // of 2 as 2 digits are dropped
        divisor = divisor / 100;
    }
    return true;
}
 
// Function to find the largest palindromic number
int largestPalindrome(int A[], int n)
{
 
    // Sort the array
    sort(A, A + n);
 
    for (int i = n - 1; i >= 0; --i) {
 
        // If number is palindrome
        if (isPalindrome(A[i]))
            return A[i];
    }
 
    // If no palindromic number found
    return -1;
}
 
// Driver program
int main()
{
    int A[] = { 1, 232, 54545, 999991 };
    int n = sizeof(A) / sizeof(A[0]);
 
    // print required answer
    cout << largestPalindrome(A, n);
 
    return 0;
}

Java

// Java implementation of above approach
 
import java.util.*;
 
class GFG
{
    // Function to check if n is palindrome
    static boolean isPalindrome(int n)
    {
        // Find the appropriate divisor
        // to extract the leading digit
        int divisor = 1;
        while (n / divisor >= 10)
            divisor *= 10;
     
        while (n != 0) {
            int leading = n / divisor;
            int trailing = n % 10;
     
            // If first and last digits are
            // not same then return false
            if (leading != trailing)
                return false;
     
            // Removing the leading and trailing
            // digits from the number
            n = (n % divisor) / 10;
     
            // Reducing divisor by a factor
            // of 2 as 2 digits are dropped
            divisor = divisor / 100;
        }
        return true;
    }
     
    // Function to find the largest palindromic number
    static int largestPalindrome(int []A, int n)
    {
     
        // Sort the array
        Arrays.sort(A);
     
        for (int i = n - 1; i >= 0; --i) {
     
            // If number is palindrome
            if (isPalindrome(A[i]))
                return A[i];
        }
     
        // If no palindromic number found
        return -1;
    }
     
    // Driver program
    public static void main(String []args)
    {
        int []A = { 1, 232, 54545, 999991 };
        int n = A.length;
     
        // print required answer
        System.out.println(largestPalindrome(A, n));
     
         
    }
 
}
 
// This code is contributed
// by ihritik

Python3

# Python3 implementation of above approach
 
# Function to check if n is palindrome
def isPalindrome(n) :
     
    # Find the appropriate divisor
    # to extract the leading digit
    divisor = 1
     
    while (n / divisor >= 10) :
        divisor *= 10
 
    while (n != 0) :
         
        leading = n // divisor
        trailing = n % 10
 
        # If first and last digits are
        # not same then return false
        if (leading != trailing) :
            return False
 
        # Removing the leading and trailing
        # digits from the number
        n = (n % divisor) // 10
 
        # Reducing divisor by a factor
        # of 2 as 2 digits are dropped
        divisor = divisor // 100
     
    return True
 
# Function to find the largest
# palindromic number
def largestPalindrome(A, n) :
 
    # Sort the array
    A.sort()
 
    for i in range(n - 1, -1, -1) :
 
        # If number is palindrome
        if (isPalindrome(A[i])) :
            return A[i]
     
    # If no palindromic number found
    return -1
 
# Driver Code
if __name__ == "__main__" :
 
    A = [ 1, 232, 54545, 999991 ]
    n = len(A)
 
    # print required answer
    print(largestPalindrome(A, n))
 
# This code is contributed by Ryuga

C#

// C# implementation of above approach
 
using System;
 
class GFG
{
    // Function to check if n is palindrome
    static bool isPalindrome(int n)
    {
        // Find the appropriate divisor
        // to extract the leading digit
        int divisor = 1;
        while (n / divisor >= 10)
            divisor *= 10;
     
        while (n != 0) {
            int leading = n / divisor;
            int trailing = n % 10;
     
            // If first and last digits are
            // not same then return false
            if (leading != trailing)
                return false;
     
            // Removing the leading and trailing
            // digits from the number
            n = (n % divisor) / 10;
     
            // Reducing divisor by a factor
            // of 2 as 2 digits are dropped
            divisor = divisor / 100;
        }
        return true;
    }
     
    // Function to find the largest palindromic number
    static int largestPalindrome(int []A, int n)
    {
     
        // Sort the array
        Array.Sort(A);
     
        for (int i = n - 1; i >= 0; --i) {
     
            // If number is palindrome
            if (isPalindrome(A[i]))
                return A[i];
        }
     
        // If no palindromic number found
        return -1;
    }
     
    // Driver program
    public static void Main()
    {
        int []A = { 1, 232, 54545, 999991 };
        int n = A.Length;
     
        // print required answer
        Console.WriteLine(largestPalindrome(A, n));
     
         
    }
 
}
 
// This code is contributed
// by ihritik

PHP

<?php
// PHP implementation of above approach
 
// Function to check if n is palindrome
function isPalindrome($n)
{
    // Find the appropriate divisor
    // to extract the leading digit
    $divisor = 1;
    while ((int)($n / $divisor) >= 10)
        $divisor *= 10;
 
    while ($n != 0)
    {
        $leading = (int)($n / $divisor);
        $trailing = $n % 10;
 
        // If first and last digits are
        // not same then return false
        if ($leading != $trailing)
            return false;
 
        // Removing the leading and trailing
        // digits from the number
        $n = (int)(($n % $divisor) / 10);
 
        // Reducing divisor by a factor
        // of 2 as 2 digits are dropped
        $divisor = (int)($divisor / 100);
    }
    return true;
}
 
// Function to find the largest
// palindromic number
function largestPalindrome($A, $n)
{
 
    // Sort the array
    sort($A);
 
    for ($i = $n - 1; $i >= 0; --$i)
    {
 
        // If number is palindrome
        if (isPalindrome($A[$i]))
            return $A[$i];
    }
 
    // If no palindromic number found
    return -1;
}
 
// Driver Code
$A = array(1, 232, 54545, 999991);
$n = sizeof($A);
 
// print required answer
echo largestPalindrome($A, $n);
 
// This code is contributed
// by Akanksha Rai
?>

Javascript

<script>
//Javascript implementation of above approach
 
//function for sorting
function sort(a, n) {
   var i, j, min, temp;
   for (i = 0; i < n - 1; i++) {
      min = i;
      for (j = i + 1; j < n; j++)
      if (a[j] < a[min])
      min = j;
      temp = a[i];
      a[i] = a[min];
      a[min] = temp;
   }
}
 
// Function to check if n is palindrome
function isPalindrome(n)
{
    // Find the appropriate divisor
    // to extract the leading digit
    var divisor = 1;
    while (parseInt(n / divisor) >= 10)
        divisor *= 10;
 
    while (n != 0) {
        var leading = parseInt(n / divisor);
        var trailing = n % 10;
 
        // If first and last digits are
        // not same then return false
        if (leading != trailing)
            return false;
 
        // Removing the leading and trailing
        // digits from the number
        n = parseInt((n % divisor) / 10);
 
        // Reducing divisor by a factor
        // of 2 as 2 digits are dropped
        divisor = parseInt(divisor / 100);
    }
    return true;
}
 
// Function to find the largest palindromic number
function largestPalindrome( A, n)
{
 
    // Sort the array
    sort(A,A.length);
 
    for (var i = n - 1; i >= 0; --i) {
 
        // If number is palindrome
        if (isPalindrome(A[i]))
            return A[i];
    }
 
    // If no palindromic number found
    return -1;
}
 
var  A = [ 1, 232, 54545, 999991 ];
var n = A.length;
 // print required answer
 document.write(largestPalindrome(A, n));
 
 
//This code is contributed by SoumikMondal
</script>
Producción: 

54545

 

Método 2: 

  • Establezca una variable currentMax = -1 y comience a recorrer la array.
  • Si el elemento actual arr[i] > currentMax y arr[i] es un palíndromo.
  • Luego establezca currentMax = arr[i] .
  • Imprime currentMax al final.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if n is palindrome
bool isPalindrome(int n)
{
    // Find the appropriate divisor
    // to extract the leading digit
    int divisor = 1;
    while (n / divisor >= 10)
        divisor *= 10;
 
    while (n != 0) {
        int leading = n / divisor;
        int trailing = n % 10;
 
        // If first and last digits are
        // not same then return false
        if (leading != trailing)
            return false;
 
        // Removing the leading and trailing
        // digits from the number
        n = (n % divisor) / 10;
 
        // Reducing divisor by a factor
        // of 2 as 2 digits are dropped
        divisor = divisor / 100;
    }
    return true;
}
 
// Function to find the largest palindromic number
int largestPalindrome(int A[], int n)
{
    int currentMax = -1;
 
    for (int i = 0; i < n; i++) {
 
        // If a palindrome larger than the currentMax is found
        if (A[i] > currentMax && isPalindrome(A[i]))
            currentMax = A[i];
    }
 
    // Return the largest palindromic number from the array
    return currentMax;
}
 
// Driver program
int main()
{
    int A[] = { 1, 232, 54545, 999991 };
    int n = sizeof(A) / sizeof(A[0]);
 
    // print required answer
    cout << largestPalindrome(A, n);
 
    return 0;
}

Java

// Java implementation of above approach
 
import java.util.*;
 
class GFG
{
    // Function to check if n is palindrome
    static boolean isPalindrome(int n)
    {
        // Find the appropriate divisor
        // to extract the leading digit
        int divisor = 1;
        while (n / divisor >= 10)
            divisor *= 10;
     
        while (n != 0) {
            int leading = n / divisor;
            int trailing = n % 10;
     
            // If first and last digits are
            // not same then return false
            if (leading != trailing)
                return false;
     
            // Removing the leading and trailing
            // digits from the number
            n = (n % divisor) / 10;
     
            // Reducing divisor by a factor
            // of 2 as 2 digits are dropped
            divisor = divisor / 100;
        }
        return true;
    }
     
    // Function to find the largest palindromic number
    static int largestPalindrome(int []A, int n)
    {
        int currentMax = -1;
     
        for (int i = 0; i < n; i++) {
     
            // If a palindrome larger than the currentMax is found
            if (A[i] > currentMax && isPalindrome(A[i]))
                currentMax = A[i];
        }
     
        // Return the largest palindromic number from the array
        return currentMax;
    }
     
    // Driver program
    public static void main(String []args)
    {
        int []A = { 1, 232, 54545, 999991 };
        int n = A.length;
     
        // print required answer
        System.out.println(largestPalindrome(A, n));
     
         
    }
 
}
 
// This code is contributed
// by ihritik

Python3

# Python 3 implementation of above approach
 
# Function to check if n is palindrome
def isPalindrome(n):
     
    # Find the appropriate divisor
    # to extract the leading digit
    divisor = 1
    while (int(n / divisor) >= 10):
        divisor *= 10
 
    while (n != 0):
        leading = int(n / divisor)
        trailing = n % 10
 
        # If first and last digits are
        # not same then return false
        if (leading != trailing):
            return False
 
        # Removing the leading and trailing
        # digits from the number
        n = int((n % divisor) / 10)
 
        # Reducing divisor by a factor
        # of 2 as 2 digits are dropped
        divisor = int(divisor / 100)
    return True
 
# Function to find the largest
# palindromic number
def largestPalindrome(A, n):
    currentMax = -1
 
    for i in range(0, n, 1):
         
        # If a palindrome larger than
        # the currentMax is found
        if (A[i] > currentMax and isPalindrome(A[i])):
            currentMax = A[i]
     
    # Return the largest palindromic
    # number from the array
    return currentMax
 
# Driver Code
if __name__ == '__main__':
    A = [1, 232, 54545, 999991]
    n = len(A)
 
    # print required answer
    print(largestPalindrome(A, n))
 
# This code is contributed by
# Surendra_Gangwar

C#

// C# implementation of above approach
 
using System;
 
class GFG
{
    // Function to check if n is palindrome
    static bool isPalindrome(int n)
    {
        // Find the appropriate divisor
        // to extract the leading digit
        int divisor = 1;
        while (n / divisor >= 10)
            divisor *= 10;
     
        while (n != 0) {
            int leading = n / divisor;
            int trailing = n % 10;
     
            // If first and last digits are
            // not same then return false
            if (leading != trailing)
                return false;
     
            // Removing the leading and trailing
            // digits from the number
            n = (n % divisor) / 10;
     
            // Reducing divisor by a factor
            // of 2 as 2 digits are dropped
            divisor = divisor / 100;
        }
        return true;
    }
     
    // Function to find the largest palindromic number
    static int largestPalindrome(int []A, int n)
    {
        int currentMax = -1;
     
        for (int i = 0; i < n; i++) {
     
            // If a palindrome larger than the currentMax is found
            if (A[i] > currentMax && isPalindrome(A[i]))
                currentMax = A[i];
        }
     
        // Return the largest palindromic number from the array
        return currentMax;
    }
     
    // Driver program
    public static void Main()
    {
        int []A = { 1, 232, 54545, 999991 };
        int n = A.Length;
     
        // print required answer
        Console.WriteLine(largestPalindrome(A, n));
     
         
    }
 
}
 
// This code is contributed
// by ihritik

PHP

<?php
// PHP implementation of above approach
 
// Function to check if n is palindrome
function isPalindrome($n)
{
    // Find the appropriate divisor
    // to extract the leading digit
    $divisor = 1;
    while ((int)($n / $divisor) >= 10)
        $divisor *= 10;
 
    while ($n != 0)
    {
        $leading = (int)($n / $divisor);
        $trailing = $n % 10;
 
        // If first and last digits are
        // not same then return false
        if ($leading != $trailing)
            return false;
 
        // Removing the leading and trailing
        // digits from the number
        $n = ($n % $divisor) / 10;
 
        // Reducing divisor by a factor
        // of 2 as 2 digits are dropped
        $divisor = $divisor / 100;
    }
    return true;
}
 
// Function to find the largest
// palindromic number
function largestPalindrome($A, $n)
{
    $currentMax = -1;
 
    for ($i = 0; $i < $n; $i++)
    {
 
        // If a palindrome larger than
        // the currentMax is found
        if ($A[$i] > $currentMax &&
            isPalindrome($A[$i]))
            $currentMax = $A[$i];
    }
 
    // Return the largest palindromic
    // number from the array
    return $currentMax;
}
 
// Driver Code
$A = array(1, 232, 54545, 999991);
$n = sizeof($A);
 
// print required answer
echo(largestPalindrome($A, $n));
 
// This code is contributed
// by Mukul Singh
?>

Javascript

<script>
 
// Javascript implementation of above approach
 
// Function to check if n is palindrome
function isPalindrome(n)
{
     
    // Find the appropriate divisor
    // to extract the leading digit
    var divisor = 1;
    while (parseInt(n / divisor) >= 10)
        divisor *= 10;
 
    while (n != 0)
    {
        var leading = parseInt(n / divisor);
        var trailing = n % 10;
 
        // If first and last digits are
        // not same then return false
        if (leading != trailing)
            return false;
 
        // Removing the leading and trailing
        // digits from the number
        n = parseInt((n % divisor) / 10);
 
        // Reducing divisor by a factor
        // of 2 as 2 digits are dropped
        divisor = parseInt(divisor / 100);
    }
    return true;
}
 
// Function to find the largest palindromic number
function largestPalindrome(A, n)
{
    var currentMax = -1;
 
    for(var i = 0; i < n; i++)
    {
         
        // If a palindrome larger than the
        // currentMax is found
        if (A[i] > currentMax && isPalindrome(A[i]))
            currentMax = A[i];
    }
 
    // Return the largest palindromic
    // number from the array
    return currentMax;
}
 
// Driver code
var A = [ 1, 232, 54545, 999991 ];
var n = A.length;
 
// Print required answer
document.write( largestPalindrome(A, n));
 
// This code is contributed by rrrtnx
 
</script>
Producción: 

54545

 

Publicación traducida automáticamente

Artículo escrito por Sanjit_Prasad y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *