Números de Fibonacci más grandes y más pequeños en una array

Dada una array arr[] de N enteros positivos, la tarea es encontrar los elementos de Fibonacci mínimos (más pequeños) y máximos (más grandes) en la array dada.
Ejemplos: 
 

Entrada: arr[] = 1, 2, 3, 4, 5, 6, 7 
Salida: 1, 5 
Explicación: 
la array contiene 4 valores de fibonacci 1, 2, 3 y 5. 
Por lo tanto, el máximo es 5 y el mínimo es 1.
Entrada: arr[] = 13, 3, 15, 6, 8, 11 
Salida: 3, 13 
Explicación: 
La array contiene 3 valores de fibonacci 13, 3 y 8. 
Por lo tanto, el máximo es 13 y el mínimo es 3. 
 

Enfoque: este enfoque es similar a encontrar el elemento mínimo y máximo en una array. Recorra la array una por una y verifique si es un número de Fibonacci o no. Si es así, encuentre el máximo y el mínimo entre tales números.
Para comprobar si el número es un número de Fibonacci o no de manera óptima O(1), genere todos los números de Fibonacci hasta el elemento máximo de la array mediante programación dinámica y almacénelos en una tabla hash.
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ program to find minimum and maximum
// fibonacci number in given array
#include <bits/stdc++.h>
using namespace std;
 
// Function to create hash table
// to check Fibonacci numbers
void createHash(set<int>& hash,
                int maxElement)
{
    // Insert initial two numbers
    // in the hash table
    int prev = 0, curr = 1;
    hash.insert(prev);
    hash.insert(curr);
 
    while (curr <= maxElement) {
 
        // Sum of previous two numbers
        int temp = curr + prev;
 
        hash.insert(temp);
 
        // Update the variable each time
        prev = curr;
        curr = temp;
    }
}
 
// Function to find minimum and maximum
// fibonacci number in given array
void fibonacci(int arr[], int n)
{
 
    // Find maximum value in the array
    int max_val
        = *max_element(
            arr, arr + n);
 
    // Creating a set containing
    // all Fibonacci numbers up to
    // maximum value in the array
    set<int> hash;
    createHash(hash, max_val);
 
    // For storing the Minimum
    // and Maximum Fibonacci number
    int minimum = INT_MAX;
    int maximum = INT_MIN;
 
    for (int i = 0; i < n; i++) {
 
        // Check if current element
        // is a fibonacci number
        if (hash.find(arr[i]) != hash.end()) {
 
            // Update the maximum and
            // minimum accordingly
            minimum = min(minimum, arr[i]);
            maximum = max(maximum, arr[i]);
        }
    }
 
    cout << minimum << ", "
         << maximum << endl;
}
 
// Driver code
int main()
{
 
    int arr[] = { 1, 2, 3, 4, 5, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    fibonacci(arr, n);
 
    return 0;
}

Java

// Java program to find minimum and maximum
// fibonacci number in given array
import java.util.*;
 
class GFG{
  
// Function to create hash table
// to check Fibonacci numbers
static void createHash(HashSet<Integer> hash,
                int maxElement)
{
    // Insert initial two numbers
    // in the hash table
    int prev = 0, curr = 1;
    hash.add(prev);
    hash.add(curr);
  
    while (curr <= maxElement) {
  
        // Sum of previous two numbers
        int temp = curr + prev;
  
        hash.add(temp);
  
        // Update the variable each time
        prev = curr;
        curr = temp;
    }
}
  
// Function to find minimum and maximum
// fibonacci number in given array
static void fibonacci(int arr[], int n)
{
  
    // Find maximum value in the array
    int max_val= Arrays.stream(arr).max().getAsInt();
  
    // Creating a set containing
    // all Fibonacci numbers up to
    // maximum value in the array
    HashSet<Integer> hash = new HashSet<Integer>();
    createHash(hash, max_val);
  
    // For storing the Minimum
    // and Maximum Fibonacci number
    int minimum = Integer.MAX_VALUE;
    int maximum = Integer.MIN_VALUE;
  
    for (int i = 0; i < n; i++) {
  
        // Check if current element
        // is a fibonacci number
        if (hash.contains(arr[i])) {
  
            // Update the maximum and
            // minimum accordingly
            minimum = Math.min(minimum, arr[i]);
            maximum = Math.max(maximum, arr[i]);
        }
    }
  
    System.out.print(minimum+ ", "
         + maximum +"\n");
}
  
// Driver code
public static void main(String[] args)
{
  
    int arr[] = { 1, 2, 3, 4, 5, 6, 7 };
    int n = arr.length;
  
    fibonacci(arr, n);
  
}
}
 
// This code is contributed by sapnasingh4991

Python3

# Python 3 program to find minimum and maximum
# fibonacci number in given array
 
import sys
 
# Function to create hash table
# to check Fibonacci numbers
def createHash(hash, maxElement):
    # Insert initial two numbers
    # in the hash table
    prev = 0
    curr = 1
    hash.add(prev)
    hash.add(curr)
 
    while (curr <= maxElement):
        # Sum of previous two numbers
        temp = curr + prev
 
        hash.add(temp)
        # Update the variable each time
        prev = curr
        curr = temp
 
# Function to find minimum and maximum
# fibonacci number in given array
def fibonacci(arr, n):
 
    # Find maximum value in the array
    max_val = max(arr)
 
    # Creating a set containing
    # all Fibonacci numbers up to
    # maximum value in the array
    hash = set()
    createHash(hash, max_val)
 
    # For storing the Minimum
    # and Maximum Fibonacci number
    minimum = sys.maxsize
    maximum = -sys.maxsize-1
 
    for i in range(n):
 
        # Check if current element
        # is a fibonacci number
        if (arr[i] in hash):
 
            # Update the maximum and
            # minimum accordingly
            minimum = min(minimum, arr[i])
            maximum = max(maximum, arr[i])
 
    print(minimum,end = ", ")
    print(maximum)
 
# Driver code
if __name__ == '__main__':
    arr = [1, 2, 3, 4, 5, 6, 7]
    n = len(arr)
 
    fibonacci(arr, n)
 
# This code is contributed by Surendra_Gangwar

C#

// C# program to find minimum and maximum
// fibonacci number in given array
using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG{
 
// Function to create hash table
// to check Fibonacci numbers
static void createHash(HashSet<int> hash,
                int maxElement)
{
    // Insert initial two numbers
    // in the hash table
    int prev = 0, curr = 1;
    hash.Add(prev);
    hash.Add(curr);
 
    while (curr <= maxElement) {
 
        // Sum of previous two numbers
        int temp = curr + prev;
 
        hash.Add(temp);
 
        // Update the variable each time
        prev = curr;
        curr = temp;
    }
}
 
// Function to find minimum and maximum
// fibonacci number in given array
static void fibonacci(int []arr, int n)
{
 
    // Find maximum value in the array
    int max_val= arr.Max();
 
    // Creating a set containing
    // all Fibonacci numbers up to
    // maximum value in the array
    HashSet<int> hash = new HashSet<int>();
    createHash(hash, max_val);
 
    // For storing the Minimum
    // and Maximum Fibonacci number
    int minimum = int.MaxValue;
    int maximum = int.MinValue;
 
    for (int i = 0; i < n; i++) {
 
        // Check if current element
        // is a fibonacci number
        if (hash.Contains(arr[i])) {
 
            // Update the maximum and
            // minimum accordingly
            minimum = Math.Min(minimum, arr[i]);
            maximum = Math.Max(maximum, arr[i]);
        }
    }
 
    Console.Write(minimum+ ", "
        + maximum +"\n");
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 1, 2, 3, 4, 5, 6, 7 };
    int n = arr.Length;
 
    fibonacci(arr, n);
}
}
 
// This code is contributed by Princi Singh

Javascript

<script>
 
// Javascript program to find minimum and maximum
// fibonacci number in given array
 
// Function to create hash table
// to check Fibonacci numbers
function createHash(hash, maxElement)
{
    // Insert initial two numbers
    // in the hash table
    let prev = 0, curr = 1;
    hash.add(prev);
    hash.add(curr);
    
    while (curr <= maxElement) {
    
        // Sum of previous two numbers
        let temp = curr + prev;
    
        hash.add(temp);
    
        // Update the variable each time
        prev = curr;
        curr = temp;
    }
}
    
// Function to find minimum and maximum
// fibonacci number in given array
function fibonacci(arr, n)
{
    
    // Find maximum value in the array
    let max_val= Math.max(...arr);
    
    // Creating a set containing
    // all Fibonacci numbers up to
    // maximum value in the array
    let hash = new Set();
    createHash(hash, max_val);
    
    // For storing the Minimum
    // and Maximum Fibonacci number
    let minimum = Number.MAX_VALUE;
    let maximum = Number.MIN_VALUE;
    
    for (let i = 0; i < n; i++) {
    
        // Check if current element
        // is a fibonacci number
        if (hash.has(arr[i])) {
    
            // Update the maximum and
            // minimum accordingly
            minimum = Math.min(minimum, arr[i]);
            maximum = Math.max(maximum, arr[i]);
        }
    }
    
    document.write(minimum+ ", "
         + maximum +"<br/>");
}
 
// Driver code
     
      let arr = [ 1, 2, 3, 4, 5, 6, 7 ];
    let n = arr.length;
    
    fibonacci(arr, n);
  
 // This code is contributed by sanjoy_62.
</script>
Producción: 

1, 5

 

Publicación traducida automáticamente

Artículo escrito por muskan_garg y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *