Números de pares de una array cuyo promedio también está presente en la array

Dada una array arr[] que consta de N enteros, la tarea es contar el número de pares distintos (arr[i], arr[j]) en la array de modo que el promedio de pares también esté presente en la array
Nota: Considere (arr[i], arr[j]) y (arr[j], arr[i]) como los mismos pares.

Ejemplos:

Entrada: arr[] = {2, 1, 3}
Salida: 1
Explicación: El único par cuyo promedio está presente en la array dada es (1, 3) (Promedio = 2).

Entrada: arr[] = {4, 2, 5, 1, 3, 5}
Salida: 7

Enfoque ingenuo: siga los pasos a continuación para resolver el problema:

  • Inicialice una variable, digamos contar como 0 para almacenar todo el recuento de pares cuyo promedio existe en la array.
  • Inserta todos los elementos de la array en un conjunto S .
  • Recorra el conjunto S y para cada elemento del conjunto S , genere todos los pares posibles de la array dada y si la suma de cualquier par es igual al elemento actual del conjunto , incremente el valor de count en 1 .
  • Después de completar los pasos anteriores, imprima el valor de conteo como el conteo resultante de pares.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of
// pairs from the array having sum S
int getCountPairs(vector<int> arr, int N, int S)
{
     
    // Stores the total count of
    // pairs whose sum is 2*S
    int count = 0;
 
    // Generate all possible pairs
    // and check their sums
    for(int i = 0; i < arr.size(); i++)
    {
        for(int j = i + 1; j < arr.size(); j++)
        {
             
            // If the sum is S, then
            // increment the count
            if ((arr[i] + arr[j]) == S)
                count++;
        }
    }
 
    // Return the total
    // count of pairs
    return count;
}
 
// Function to count of pairs having
// whose average exists in the array
int countPairs(vector<int> arr, int N)
{
     
    // Initialize the count
    int count = 0;
 
    // Use set to remove duplicates
    unordered_set<int> S;
 
    // Add elements in the set
    for(int i = 0; i < N; i++)
        S.insert(arr[i]);
 
    for(int ele : S)
    {
        int sum = 2 * ele;
 
        // For every sum, count
        // all possible pairs
        count += getCountPairs(arr, N, sum);
    }
 
    // Return the total count
    return count;
}
 
// Driver Code
int main()
{
    vector<int> arr = { 4, 2, 5, 1, 3, 5 };
    int N = arr.size();
    cout << countPairs(arr, N);
 
    return 0;
}
 
// This code is contributed by Kingash

Java

// Java program for the above approach
 
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to count the number of
    // pairs from the array having sum S
    public static int getCountPairs(
        int arr[], int N, int S)
    {
        // Stores the total count of
        // pairs whose sum is 2*S
        int count = 0;
 
        // Generate all possible pairs
        // and check their sums
        for (int i = 0;
             i < arr.length; i++) {
 
            for (int j = i + 1;
                 j < arr.length; j++) {
 
                // If the sum is S, then
                // increment the count
                if ((arr[i] + arr[j]) == S)
                    count++;
            }
        }
 
        // Return the total
        // count of pairs
        return count;
    }
 
    // Function to count of pairs having
    // whose average exists in the array
    public static int countPairs(
        int arr[], int N)
    {
        // Initialize the count
        int count = 0;
 
        // Use set to remove duplicates
        HashSet<Integer> S = new HashSet<>();
 
        // Add elements in the set
        for (int i = 0; i < N; i++)
            S.add(arr[i]);
 
        for (int ele : S) {
 
            int sum = 2 * ele;
 
            // For every sum, count
            // all possible pairs
            count += getCountPairs(
                arr, N, sum);
        }
 
        // Return the total count
        return count;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 4, 2, 5, 1, 3, 5 };
        int N = arr.length;
        System.out.print(
            countPairs(arr, N));
    }
}

Python3

# Python3 program for the above approach
 
# Function to count the number of
# pairs from the array having sum S
def getCountPairs(arr, N, S):
     
    # Stores the total count of
    # pairs whose sum is 2*S
    count = 0
 
    # Generate all possible pairs
    # and check their sums
    for i in range(len(arr)):
        for j in range(i + 1, len(arr)):
 
            # If the sum is S, then
            # increment the count
            if ((arr[i] + arr[j]) == S):
                count += 1
 
    # Return the total
    # count of pairs
    return count
 
# Function to count of pairs having
# whose average exists in the array
def countPairs(arr, N):
     
    # Initialize the count
    count = 0
 
    # Use set to remove duplicates
    S = set([])
 
    # Add elements in the set
    for i in range(N):
        S.add(arr[i])
 
    for ele in S:
        sum = 2 * ele
 
        # For every sum, count
        # all possible pairs
        count += getCountPairs(arr, N, sum)
 
    # Return the total count
    return count
 
# Driver Code
if __name__ == "__main__":
 
    arr = [ 4, 2, 5, 1, 3, 5 ]
    N = len(arr)
     
    print(countPairs(arr, N))
 
# This code is contributed by ukasp

C#

// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG
{
 
    // Function to count the number of
    // pairs from the array having sum S
    public static int getCountPairs(
        int []arr, int N, int S)
    {
       
        // Stores the total count of
        // pairs whose sum is 2*S
        int count = 0;
 
        // Generate all possible pairs
        // and check their sums
        for (int i = 0;
             i < arr.Length; i++) {
 
            for (int j = i + 1;
                 j < arr.Length; j++) {
 
                // If the sum is S, then
                // increment the count
                if ((arr[i] + arr[j]) == S)
                    count++;
            }
        }
 
        // Return the total
        // count of pairs
        return count;
    }
 
    // Function to count of pairs having
    // whose average exists in the array
    public static int countPairs(
        int []arr, int N)
    {
        // Initialize the count
        int count = 0;
 
        // Use set to remove duplicates
        HashSet<int> S = new HashSet<int>();
 
        // Add elements in the set
        for (int i = 0; i < N; i++)
            S.Add(arr[i]);
 
        foreach (int ele in S) {
 
            int sum = 2 * ele;
 
            // For every sum, count
            // all possible pairs
            count += getCountPairs(
                arr, N, sum);
        }
 
        // Return the total count
        return count;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int []arr = { 4, 2, 5, 1, 3, 5 };
        int N = arr.Length;
        Console.Write(
            countPairs(arr, N));
    }
}
 
// This code is contributed by Princi Singh

Javascript

<script>
 
// JavaScript program for the above approach
 
    // Function to count the number of
    // pairs from the array having sum S
    function getCountPairs(
        arr, N, S)
    {
        // Stores the total count of
        // pairs whose sum is 2*S
        let count = 0;
  
        // Generate all possible pairs
        // and check their sums
        for (let i = 0;
             i < arr.length; i++) {
  
            for (let j = i + 1;
                 j < arr.length; j++) {
  
                // If the sum is S, then
                // increment the count
                if ((arr[i] + arr[j]) == S)
                    count++;
            }
        }
  
        // Return the total
        // count of pairs
        return count;
    }
  
    // Function to count of pairs having
    // whose average exists in the array
    function countPairs(arr, N)
    {
        // Initialize the count
        let count = 0;
  
        // Use set to remove duplicates
        let S = [];
  
        // Add elements in the set
        for (let i = 0; i < N; i++)
            S.push(arr[i]);
  
        for (let ele in S) {
  
            let sum = 2 * ele;
  
            // For every sum, count
            // all possible pairs
            count += getCountPairs(
                arr, N, sum);
        }
  
        // Return the total count
        return count;
    }
 
// Driver code
 
         let arr = [ 4, 2, 5, 1, 3, 5 ];
        let N = arr.length;
        document.write(
            countPairs(arr, N));
 
// This code is contributed by code_hunt.
</script>
Producción: 

7

 

Complejidad temporal: O(N 3 )
Espacio auxiliar: O(N)

Enfoque eficiente: el enfoque anterior también se puede optimizar almacenando la frecuencia de la suma de todos los pares posibles en la array dada en un HashMap y encontrar el recuento de cada elemento de la array en consecuencia. Siga los pasos a continuación para resolver el problema:

  • Inicialice una variable, digamos contar como 0 para almacenar todo el recuento de pares cuyo promedio existe en la array.
  • Inserta todos los elementos de la array en un conjunto S .
  • Inicialice un HashMap, digamos M que almacena la frecuencia de la suma de todos los pares posibles en la array dada .
  • Recorra el conjunto S y para cada elemento (digamos X ) en el conjunto S actualice el valor de cuenta por el valor (M[X]/2) .
  • Después de completar los pasos anteriores, imprima el valor de conteo como el conteo resultante de pares.

A continuación se muestra la implementación del enfoque anterior:

C++

// CPP program for the above approach
#include<bits/stdc++.h>
using namespace std;
 
    // Function to count the total count
    // of pairs having sum S
    int getCountPairs(int arr[],
                             int N, int S)
    {
        map<int,int> mp;
 
        // Store the total count of all
        // elements in map mp
        for (int i = 0; i < N; i++) {
 
            mp[arr[i]]++;
        }
 
        // Stores the total count of
        // total pairs
        int twice_count = 0;
 
        // Iterate through each element
        // and increment the count
        for (int i = 0; i < N; i++) {
 
            // If the value (S - arr[i])
            // exists in the map hm
            if (mp.find(S - arr[i]) != mp.end()) {
 
                // Update the twice count
                twice_count += mp[S - arr[i]];
            }
 
            if (S - arr[i] == arr[i])
                twice_count--;
        }
 
        // Return the half of twice_count
        return twice_count / 2;
    }
 
    // Function to count of pairs having
    // whose average exists in the array
    int countPairs(
        int arr[], int N)
    {
        // Stores the total count of
        // pairs
        int count = 0;
 
        // Use set to remove duplicates
        set<int> S;
 
        // Insert all the element in
        // the set S
        for (int i = 0; i < N; i++)
            S.insert(arr[i]);
 
        for (int ele : S) {
 
            int sum = 2 * ele;
 
            // For every sum find the
            // getCountPairs
            count += getCountPairs(
                arr, N, sum);
        }
 
        // Return the total count of
        // pairs
        return count;
    }
 
    // Driver Code
    int main()
    {
        int N = 6;
        int arr[] = { 4, 2, 5, 1, 3, 5 };
        cout<<(countPairs(arr, N));
    }
 
// This code is contributed by ipg2016107.

Java

// Java program for the above approach
 
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to count the total count
    // of pairs having sum S
    static int getCountPairs(int arr[],
                             int N, int S)
    {
        HashMap<Integer, Integer> mp
            = new HashMap<>();
 
        // Store the total count of all
        // elements in map mp
        for (int i = 0; i < N; i++) {
 
            // Initialize value to 0,
            // if key not found
            if (!mp.containsKey(arr[i]))
                mp.put(arr[i], 0);
 
            mp.put(arr[i],
                   mp.get(arr[i]) + 1);
        }
 
        // Stores the total count of
        // total pairs
        int twice_count = 0;
 
        // Iterate through each element
        // and increment the count
        for (int i = 0; i < N; i++) {
 
            // If the value (S - arr[i])
            // exists in the map hm
            if (mp.get(S - arr[i])
                != null) {
 
                // Update the twice count
                twice_count += mp.get(
                    S - arr[i]);
            }
 
            if (S - arr[i] == arr[i])
                twice_count--;
        }
 
        // Return the half of twice_count
        return twice_count / 2;
    }
 
    // Function to count of pairs having
    // whose average exists in the array
    public static int countPairs(
        int arr[], int N)
    {
        // Stores the total count of
        // pairs
        int count = 0;
 
        // Use set to remove duplicates
        HashSet<Integer> S = new HashSet<>();
 
        // Insert all the element in
        // the set S
        for (int i = 0; i < N; i++)
            S.add(arr[i]);
 
        for (int ele : S) {
 
            int sum = 2 * ele;
 
            // For every sum find the
            // getCountPairs
            count += getCountPairs(
                arr, N, sum);
        }
 
        // Return the total count of
        // pairs
        return count;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 6;
        int arr[] = { 4, 2, 5, 1, 3, 5 };
        System.out.println(
            countPairs(arr, N));
    }
}

Python3

# Python program for the above approach
 
# Function to count the total count
# of pairs having sum S
def getCountPairs(arr,N,S):
    mp = {}
  
    # Store the total count of all
    # elements in map mp
    for i in range(N):
  
        # Initialize value to 0,
        # if key not found
        if (arr[i] not in mp):
            mp[arr[i]] = 0
  
        mp[arr[i]] += 1
  
    # Stores the total count of
    # total pairs
    twice_count = 0
  
    # Iterate through each element
    # and increment the count
    for i in range(N):
  
        # If the value (S - arr[i])
        # exists in the map hm
        if ((S - arr[i]) in mp):
  
            # Update the twice count
            twice_count += mp[S - arr[i]]
             
        if (S - arr[i] == arr[i]):
            twice_count -= 1
         
    # Return the half of twice_count
    return (twice_count // 2)
 
# Function to count of pairs having
# whose average exists in the array
def countPairs(arr,N):
 
    # Stores the total count of
    # pairs
    count = 0
  
    # Use set to remove duplicates
    S = set()
  
    # Insert all the element in
    # the set S
    for i in range(N):
        S.add(arr[i])
  
    for ele in S:
  
        sum = 2 * ele
  
        # For every sum find the
        # getCountPairs
        count += getCountPairs(arr, N, sum)
  
    # Return the total count of
    # pairs
    return count
 
# Driver Code
N = 6
arr = [4, 2, 5, 1, 3, 5 ]
print(countPairs(arr, N))
 
# This code is contributed by shinjanpatra

Javascript

<script>
 
// JavaScript program for the above approach
 
// Function to count the total count
// of pairs having sum S
function getCountPairs(arr,N,S)
{
    let mp = new Map();
  
        // Store the total count of all
        // elements in map mp
        for (let i = 0; i < N; i++) {
  
            // Initialize value to 0,
            // if key not found
            if (!mp.has(arr[i]))
                mp.set(arr[i], 0);
  
            mp.set(arr[i],
                   mp.get(arr[i]) + 1);
        }
  
        // Stores the total count of
        // total pairs
        let twice_count = 0;
  
        // Iterate through each element
        // and increment the count
        for (let i = 0; i < N; i++) {
  
            // If the value (S - arr[i])
            // exists in the map hm
            if (mp.get(S - arr[i])
                != null) {
  
                // Update the twice count
                twice_count += mp.get(
                    S - arr[i]);
            }
  
            if (S - arr[i] == arr[i])
                twice_count--;
        }
  
        // Return the half of twice_count
        return Math.floor(twice_count / 2);
}
 
// Function to count of pairs having
// whose average exists in the array
function countPairs(arr,N)
{
    // Stores the total count of
        // pairs
        let count = 0;
  
        // Use set to remove duplicates
        let S = new Set();
  
        // Insert all the element in
        // the set S
        for (let i = 0; i < N; i++)
            S.add(arr[i]);
  
        for (let ele of S.values()) {
  
            let sum = 2 * ele;
  
            // For every sum find the
            // getCountPairs
            count += getCountPairs(
                arr, N, sum);
        }
  
        // Return the total count of
        // pairs
        return count;
}
 
// Driver Code
let  N = 6;
let arr=[4, 2, 5, 1, 3, 5 ];
document.write(countPairs(arr, N));
 
// This code is contributed by avanitrachhadiya2155
 
</script>
Producción: 

7

 

Tiempo Complejidad: O(N 2 )
Espacio Auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por avaies y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *