Dado un entero K y un rango de números consecutivos [L, R] . La tarea es contar los números del rango dado que tienen raíz digital como K (1 ≤ K ≤ 9). La raíz digital es la suma de los dígitos de un número hasta que se convierte en un número de un solo dígito. Por ejemplo, 256 -> 2 + 5 + 6 = 13 -> 1 + 3 = 4.
Ejemplos:
Entrada: L = 10, R = 22, K = 3
Salida: 2
12 y 21 son los únicos números del rango cuya suma de dígitos es 3.Entrada: L = 100, R = 200, K = 5
Salida: 11
Acercarse:
- Lo primero es tener en cuenta que para cualquier número, la suma de los dígitos es igual al número % 9. Si el resto es 0, entonces la suma de los dígitos es 9.
- Entonces, si K = 9, entonces reemplace K con 0.
- Tarea, ahora es encontrar el conteo de números en el rango L a R con módulo 9 igual a K.
- Divida todo el rango en los máximos grupos posibles de 9 comenzando por L (TotalRange / 9), ya que en cada rango habrá exactamente un número con módulo 9 igual a K.
- Realice un bucle sobre el número restante de elementos de R a R: recuento de elementos restantes y verifique si algún número satisface la condición.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> #define ll long long int using namespace std; // Function to return the count // of required numbers int countNumbers(int L, int R, int K) { if (K == 9) K = 0; // Count of numbers present // in given range int totalnumbers = R - L + 1; // Number of groups of 9 elements // starting from L int factor9 = totalnumbers / 9; // Left over elements not covered // in factor 9 int rem = totalnumbers % 9; // One Number in each group of 9 int ans = factor9; // To check if any number in rem // satisfy the property for (int i = R; i > R - rem; i--) { int rem1 = i % 9; if (rem1 == K) ans++; } return ans; } // Driver code int main() { int L = 10; int R = 22; int K = 3; cout << countNumbers(L, R, K); return 0; }
Java
// Java implementation of the approach class GFG { // Function to return the count // of required numbers static int countNumbers(int L, int R, int K) { if (K == 9) { K = 0; } // Count of numbers present // in given range int totalnumbers = R - L + 1; // Number of groups of 9 elements // starting from L int factor9 = totalnumbers / 9; // Left over elements not covered // in factor 9 int rem = totalnumbers % 9; // One Number in each group of 9 int ans = factor9; // To check if any number in rem // satisfy the property for (int i = R; i > R - rem; i--) { int rem1 = i % 9; if (rem1 == K) { ans++; } } return ans; } // Driver code public static void main(String[] args) { int L = 10; int R = 22; int K = 3; System.out.println(countNumbers(L, R, K)); } } /* This code contributed by PrinciRaj1992 */
Python3
# Python3 implementation of the approach # Function to return the count # of required numbers def countNumbers(L, R, K): if (K == 9): K = 0 # Count of numbers present # in given range totalnumbers = R - L + 1 # Number of groups of 9 elements # starting from L factor9 = totalnumbers // 9 # Left over elements not covered # in factor 9 rem = totalnumbers % 9 # One Number in each group of 9 ans = factor9 # To check if any number in rem # satisfy the property for i in range(R, R - rem, -1): rem1 = i % 9 if (rem1 == K): ans += 1 return ans # Driver code L = 10 R = 22 K = 3 print(countNumbers(L, R, K)) # This code is contributed # by mohit kumar
C#
// C# implementation of the approach using System ; class GFG { // Function to return the count // of required numbers static int countNumbers(int L, int R, int K) { if (K == 9) { K = 0; } // Count of numbers present // in given range int totalnumbers = R - L + 1; // Number of groups of 9 elements // starting from L int factor9 = totalnumbers / 9; // Left over elements not covered // in factor 9 int rem = totalnumbers % 9; // One Number in each group of 9 int ans = factor9; // To check if any number in rem // satisfy the property for (int i = R; i > R - rem; i--) { int rem1 = i % 9; if (rem1 == K) { ans++; } } return ans; } // Driver code public static void Main() { int L = 10; int R = 22; int K = 3; Console.WriteLine(countNumbers(L, R, K)); } } /* This code is contributed by Ryuga */
PHP
<?php // PHP implementation of the approach // Function to return the count // of required numbers function countNumbers($L, $R, $K) { if ($K == 9) $K = 0; // Count of numbers present // in given range $totalnumbers = $R - $L + 1; // Number of groups of 9 elements // starting from L $factor9 = intval($totalnumbers / 9); // Left over elements not covered // in factor 9 $rem = $totalnumbers % 9; // One Number in each group of 9 $ans = $factor9; // To check if any number in rem // satisfy the property for ($i = $R; $i > $R - $rem; $i--) { $rem1 = $i % 9; if ($rem1 == $K) $ans++; } return $ans; } // Driver code $L = 10; $R = 22; $K = 3; echo countNumbers($L, $R, $K); // This code is contributed by Ita_c ?>
Javascript
<script> // Javascript implementation of the approach // Function to return the count // of required numbers function countNumbers(L, R, K) { if (K == 9) { K = 0; } // Count of numbers present // in given range var totalnumbers = R - L + 1; // Number of groups of 9 elements // starting from L var factor9 = totalnumbers / 9; // Left over elements not covered // in factor 9 var rem = totalnumbers % 9; // One Number in each group of 9 var ans = factor9; // To check if any number in rem // satisfy the property for(var i = R; i > R - rem; i--) { var rem1 = i % 9; if (rem1 == K) { ans++; } } return ans; } // Driver Code var L = 10; var R = 22; var K = 3; document.write(Math.round(countNumbers(L, R, K))); // This code is contributed by Ankita saini </script>
Producción:
2
Complejidad temporal: O(R)
Espacio auxiliar: O(1)