numpy.exp(array, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None):
esta función matemática ayuda al usuario a calcular la exponencial de todos los elementos en la array de entrada.
Parámetros:
array : [array_like]Input array or object whose elements, we need to test. out : [ndarray, optional]Output array with same dimensions as Input array, placed with result. **kwargs : Allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.
Devolver :
An array with exponential of all elements of input array.
Código 1: Trabajando
# Python program explaining # exp() function import numpy as np in_array = [1, 3, 5] print ("Input array : ", in_array) out_array = np.exp(in_array) print ("Output array : ", out_array)
Producción :
Input array : [1, 3, 5] Output array : [ 2.71828183 20.08553692 148.4131591 ]
Código 2: Representación gráfica
# Python program showing # Graphical representation of # exp() function import numpy as np import matplotlib.pyplot as plt in_array = [1, 1.2, 1.4, 1.6, 1.8, 2] out_array = np.exp(in_array) y = [1, 1.2, 1.4, 1.6, 1.8, 2] plt.plot(in_array, y, color = 'blue', marker = "*") # red for numpy.exp() plt.plot(out_array, y, color = 'red', marker = "o") plt.title("numpy.exp()") plt.xlabel("X") plt.ylabel("Y") plt.show()
Producción :
Referencias:
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.exp.html
.
Publicación traducida automáticamente
Artículo escrito por Mohit Gupta_OMG 🙂 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA