Dada una array arr[] y dos enteros X y K . La tarea es realizar la siguiente operación en la array K veces:
- Ordenar la array.
- XOR cada elemento alternativo de la array ordenada con X , es decir, arr[0], arr[2], arr[4], …
Después de repetir los pasos anteriores K veces, imprima el elemento máximo y mínimo en la array modificada.
Ejemplos:
Entrada: arr[] = {9, 7, 11, 15, 5}, K = 1, X = 2
Salida: 7 13
Dado que las operaciones deben realizarse solo una vez,
la array ordenada será {5, 7, 9 , 11, 15}
Ahora, aplique xor con 2 en elementos alternos, es decir, 5, 9 y 15.
{5 ^ 2, 7, 9 ^ 2, 11, 15 ^ 2} que es igual a
{7, 7, 11, 11 , 13}
Entrada: arr[] = {605, 986}, K = 548, X = 569
Salida: 605 986
Enfoque: en lugar de ordenar la array en cada iteración, se puede mantener una array de frecuencia que almacenará la frecuencia de cada elemento de la array. Atravesando desde 1 hasta el elemento máximo en la array, los elementos se pueden procesar en el orden ordenado y después de cada operación, la frecuencia de los mismos elementos se puede ajustar cuando los elementos alternativos se XOR con el entero dado. Consulte la implementación de la programación para obtener más detalles.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define MAX 100000 // Function to find the maximum and the // minimum elements from the array after // performing the given operation k times void xorOnSortedArray(int arr[], int n, int k, int x) { // To store the current sequence of elements int arr1[MAX + 1] = { 0 }; // To store the next sequence of elements // after xoring with current elements int arr2[MAX + 1] = { 0 }; int xor_val[MAX + 1]; // Store the frequency of elements of arr[] in arr1[] for (int i = 0; i < n; i++) arr1[arr[i]]++; // Storing all precomputed XOR values so that // we don't have to do it again and again // as XOR is a costly operation for (int i = 0; i <= MAX; i++) xor_val[i] = i ^ x; // Perform the operations k times while (k--) { // The value of count decide on how many elements // we have to apply XOR operation int count = 0; for (int i = 0; i <= MAX; i++) { int store = arr1[i]; // If current element is present in // the array to be modified if (arr1[i] > 0) { // Suppose i = m and arr1[i] = num, it means // 'm' appears 'num' times // If the count is even we have to perform // XOR operation on alternate 'm' starting // from the 0th index because count is even // and we have to perform XOR operations // starting with initial 'm' // Hence there will be ceil(num/2) operations on // 'm' that will change 'm' to xor_val[m] i.e. m^x if (count % 2 == 0) { int div = ceil((float)arr1[i] / 2); // Decrease the frequency of 'm' from arr1[] arr1[i] = arr1[i] - div; // Increase the frequency of 'm^x' in arr2[] arr2[xor_val[i]] += div; } // If the count is odd we have to perform // XOR operation on alternate 'm' starting // from the 1st index because count is odd // and we have to leave the 0th 'm' // Hence there will be (num/2) XOR operations on // 'm' that will change 'm' to xor_val[m] i.e. m^x else if (count % 2 != 0) { int div = arr1[i] / 2; arr1[i] = arr1[i] - div; arr2[xor_val[i]] += div; } } // Updating the count by frequency of // the current elements as we have // processed that many elements count = count + store; } // Updating arr1[] which will now store the // next sequence of elements // At this time, arr1[] stores the remaining // 'm' on which XOR was not performed and // arr2[] stores the frequency of 'm^x' i.e. // those 'm' on which operation was performed // Updating arr1[] with frequency of remaining // 'm' & frequency of 'm^x' from arr2[] // With help of arr2[], we prevent sorting of // the array again and again for (int i = 0; i <= MAX; i++) { arr1[i] = arr1[i] + arr2[i]; // Resetting arr2[] for next iteration arr2[i] = 0; } } // Finding the maximum and the minimum element // from the modified array after the operations int min = INT_MAX; int max = INT_MIN; for (int i = 0; i <= MAX; i++) { if (arr1[i] > 0) { if (min > i) min = i; if (max < i) max = i; } } // Printing the max and the min element cout << min << " " << max << endl; } // Driver code int main() { int arr[] = { 605, 986 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 548, x = 569; xorOnSortedArray(arr, n, k, x); return 0; }
Java
// Java implementation of the approach class GFG { static int MAX = 100000; // Function to find the maximum and the // minimum elements from the array after // performing the given operation k times public static void xorOnSortedArray(int[] arr, int n, int k, int x) { // To store the current sequence of elements int[] arr1 = new int[MAX + 1]; // To store the next sequence of elements // after xoring with current elements int[] arr2 = new int[MAX + 1]; int[] xor_val = new int[MAX + 1]; // Store the frequency of elements // of arr[] in arr1[] for (int i = 0; i < n; i++) arr1[arr[i]]++; // Storing all precomputed XOR values so that // we don't have to do it again and again // as XOR is a costly operation for (int i = 0; i <= MAX; i++) xor_val[i] = i ^ x; // Perform the operations k times while (k-- > 0) { // The value of count decide on how many elements // we have to apply XOR operation int count = 0; for (int i = 0; i <= MAX; i++) { int store = arr1[i]; // If current element is present in // the array to be modified if (arr1[i] > 0) { // Suppose i = m and arr1[i] = num, it means // 'm' appears 'num' times // If the count is even we have to perform // XOR operation on alternate 'm' starting // from the 0th index because count is even // and we have to perform XOR operations // starting with initial 'm' // Hence there will be ceil(num/2) operations on // 'm' that will change 'm' to xor_val[m] i.e. m^x if (count % 2 == 0) { int div = (int) Math.ceil(arr1[i] / 2); // Decrease the frequency of 'm' from arr1[] arr1[i] = arr1[i] - div; // Increase the frequency of 'm^x' in arr2[] arr2[xor_val[i]] += div; } // If the count is odd we have to perform // XOR operation on alternate 'm' starting // from the 1st index because count is odd // and we have to leave the 0th 'm' // Hence there will be (num/2) XOR operations on // 'm' that will change 'm' to xor_val[m] i.e. m^x else if (count % 2 != 0) { int div = arr1[i] / 2; arr1[i] = arr1[i] - div; arr2[xor_val[i]] += div; } } // Updating the count by frequency of // the current elements as we have // processed that many elements count = count + store; } // Updating arr1[] which will now store the // next sequence of elements // At this time, arr1[] stores the remaining // 'm' on which XOR was not performed and // arr2[] stores the frequency of 'm^x' i.e. // those 'm' on which operation was performed // Updating arr1[] with frequency of remaining // 'm' & frequency of 'm^x' from arr2[] // With help of arr2[], we prevent sorting of // the array again and again for (int i = 0; i <= MAX; i++) { arr1[i] = arr1[i] + arr2[i]; // Resetting arr2[] for next iteration arr2[i] = 0; } } // Finding the maximum and the minimum element // from the modified array after the operations int min = Integer.MAX_VALUE; int max = Integer.MIN_VALUE; for (int i = 0; i <= MAX; i++) { if (arr1[i] > 0) { if (min > i) min = i; if (max < i) max = i; } } // Printing the max and the min element System.out.println(min + " " + max); } // Driver code public static void main(String[] args) { int[] arr = { 605, 986 }; int n = arr.length; int k = 548, x = 569; xorOnSortedArray(arr, n, k, x); } } // This code is contributed by // sanjeev2552
Python 3
# Python 3 implementation of the approach MAX = 10000 import sys from math import ceil, floor # Function to find the maximum and the # minimum elements from the array after # performing the given operation k times def xorOnSortedArray(arr, n, k, x): # To store the current sequence of elements arr1 = [0 for i in range(MAX + 1)] # To store the next sequence of elements # after xoring with current elements arr2 = [0 for i in range(MAX + 1)] xor_val = [0 for i in range(MAX + 1)] # Store the frequency of elements # of arr[] in arr1[] for i in range(n): arr1[arr[i]] += 1 # Storing all precomputed XOR values # so that we don't have to do it # again and again as XOR is a costly operation for i in range(MAX + 1): xor_val[i] = i ^ x # Perform the operations k times while (k > 0): k -= 1 # The value of count decide on # how many elements we have to # apply XOR operation count = 0 for i in range(MAX + 1): store = arr1[i] # If current element is present in # the array to be modified if (arr1[i] > 0): # Suppose i = m and arr1[i] = num, # it means 'm' appears 'num' times # If the count is even we have to # perform XOR operation on alternate # 'm' starting from the 0th index because # count is even and we have to perform # XOR operations starting with initial 'm' # Hence there will be ceil(num/2) # operations on 'm' that will change # 'm' to xor_val[m] i.e. m^x if (count % 2 == 0): div = arr1[i] // 2 + 1 # Decrease the frequency of # 'm' from arr1[] arr1[i] = arr1[i] - div # Increase the frequency of # 'm^x' in arr2[] arr2[xor_val[i]] += div # If the count is odd we have to perform # XOR operation on alternate 'm' starting # from the 1st index because count is odd # and we have to leave the 0th 'm' # Hence there will be (num/2) XOR operations on # 'm' that will change 'm' to xor_val[m] i.e. m^x elif (count % 2 != 0): div = arr1[i] // 2 arr1[i] = arr1[i] - div arr2[xor_val[i]] += div # Updating the count by frequency of # the current elements as we have # processed that many elements count = count + store # Updating arr1[] which will now store the # next sequence of elements # At this time, arr1[] stores the remaining # 'm' on which XOR was not performed and # arr2[] stores the frequency of 'm^x' i.e. # those 'm' on which operation was performed # Updating arr1[] with frequency of remaining # 'm' & frequency of 'm^x' from arr2[] # With help of arr2[], we prevent sorting of # the array again and again for i in range(MAX+1): arr1[i] = arr1[i] + arr2[i] # Resetting arr2[] for next iteration arr2[i] = 0 # Finding the maximum and the minimum element # from the modified array after the operations mn = sys.maxsize mx = -sys.maxsize-1 for i in range(MAX + 1): if (arr1[i] > 0): if (mn > i): mn = i if (mx < i): mx = i # Printing the max and the min element print(mn,mx) # Driver code if __name__ == '__main__': arr = [605, 986] n = len(arr) k = 548 x = 569 xorOnSortedArray(arr, n, k, x) # This code is contributed by Surendra_Gangwar
C#
// C# implementation of the approach using System; class GFG { static int MAX = 100000; // Function to find the maximum and the // minimum elements from the array after // performing the given operation k times public static void xorOnSortedArray(int[] arr, int n, int k, int x) { // To store the current sequence of elements int[] arr1 = new int[MAX + 1]; // To store the next sequence of elements // after xoring with current elements int[] arr2 = new int[MAX + 1]; int[] xor_val = new int[MAX + 1]; // Store the frequency of elements // of arr[] in arr1[] for (int i = 0; i < n; i++) arr1[arr[i]]++; // Storing all precomputed XOR values so that // we don't have to do it again and again // as XOR is a costly operation for (int i = 0; i <= MAX; i++) xor_val[i] = i ^ x; // Perform the operations k times while (k-- > 0) { // The value of count decides on // how many elements we have to // apply XOR operation int count = 0; for (int i = 0; i <= MAX; i++) { int store = arr1[i]; // If current element is present in // the array to be modified if (arr1[i] > 0) { // Suppose i = m and arr1[i] = num, // it means 'm' appears 'num' times // If the count is even we have to perform // XOR operation on alternate 'm' starting // from the 0th index because count is even // and we have to perform XOR operations // starting with initial 'm' // Hence there will be ceil(num/2) operations on // 'm' that will change 'm' to xor_val[m] i.e. m^x if (count % 2 == 0) { int div = (int) Math.Ceiling((double)(arr1[i] / 2)); // Decrease the frequency of 'm' from arr1[] arr1[i] = arr1[i] - div; // Increase the frequency of 'm^x' in arr2[] arr2[xor_val[i]] += div; } // If the count is odd we have to perform // XOR operation on alternate 'm' starting // from the 1st index because count is odd // and we have to leave the 0th 'm' // Hence there will be (num/2) XOR operations on // 'm' that will change 'm' to xor_val[m] i.e. m^x else if (count % 2 != 0) { int div = arr1[i] / 2; arr1[i] = arr1[i] - div; arr2[xor_val[i]] += div; } } // Updating the count by frequency of // the current elements as we have // processed that many elements count = count + store; } // Updating arr1[] which will now store the // next sequence of elements // At this time, arr1[] stores the remaining // 'm' on which XOR was not performed and // arr2[] stores the frequency of 'm^x' i.e. // those 'm' on which operation was performed // Updating arr1[] with frequency of remaining // 'm' & frequency of 'm^x' from arr2[] // With help of arr2[], we prevent sorting of // the array again and again for (int i = 0; i <= MAX; i++) { arr1[i] = arr1[i] + arr2[i]; // Resetting arr2[] for next iteration arr2[i] = 0; } } // Finding the maximum and the minimum element // from the modified array after the operations int min = int.MaxValue; int max = int.MinValue; for (int i = 0; i <= MAX; i++) { if (arr1[i] > 0) { if (min > i) min = i; if (max < i) max = i; } } // Printing the max and the min element Console.WriteLine(min + " " + max); } // Driver code public static void Main(String[] args) { int[] arr = { 605, 986 }; int n = arr.Length; int k = 548, x = 569; xorOnSortedArray(arr, n, k, x); } } // This code is contributed by Rajput-Ji
Javascript
<script> // Javascript implementation of the approach const MAX = 100000; // Function to find the maximum and the // minimum elements from the array after // performing the given operation k times function xorOnSortedArray(arr, n, k, x) { // To store the current sequence of elements let arr1 = new Array(MAX + 1).fill(0); // To store the next sequence of elements // after xoring with current elements let arr2 = new Array(MAX + 1).fill(0); let xor_val = new Array(MAX + 1); // Store the frequency of elements of arr[] in arr1[] for (let i = 0; i < n; i++) arr1[arr[i]]++; // Storing all precomputed XOR values so that // we don't have to do it again and again // as XOR is a costly operation for (let i = 0; i <= MAX; i++) xor_val[i] = i ^ x; // Perform the operations k times while (k--) { // The value of count decide on how many elements // we have to apply XOR operation let count = 0; for (let i = 0; i <= MAX; i++) { let store = arr1[i]; // If current element is present in // the array to be modified if (arr1[i] > 0) { // Suppose i = m and arr1[i] = num, it means // 'm' appears 'num' times // If the count is even we have to perform // XOR operation on alternate 'm' starting // from the 0th index because count is even // and we have to perform XOR operations // starting with initial 'm' // Hence there will be ceil(num/2) operations on // 'm' that will change 'm' to xor_val[m] i.e. m^x if (count % 2 == 0) { let div = Math.ceil(arr1[i] / 2); // Decrease the frequency of 'm' from arr1[] arr1[i] = arr1[i] - div; // Increase the frequency of 'm^x' in arr2[] arr2[xor_val[i]] += div; } // If the count is odd we have to perform // XOR operation on alternate 'm' starting // from the 1st index because count is odd // and we have to leave the 0th 'm' // Hence there will be (num/2) XOR operations on // 'm' that will change 'm' to xor_val[m] i.e. m^x else if (count % 2 != 0) { let div = parseInt(arr1[i] / 2); arr1[i] = arr1[i] - div; arr2[xor_val[i]] += div; } } // Updating the count by frequency of // the current elements as we have // processed that many elements count = count + store; } // Updating arr1[] which will now store the // next sequence of elements // At this time, arr1[] stores the remaining // 'm' on which XOR was not performed and // arr2[] stores the frequency of 'm^x' i.e. // those 'm' on which operation was performed // Updating arr1[] with frequency of remaining // 'm' & frequency of 'm^x' from arr2[] // With help of arr2[], we prevent sorting of // the array again and again for (let i = 0; i <= MAX; i++) { arr1[i] = arr1[i] + arr2[i]; // Resetting arr2[] for next iteration arr2[i] = 0; } } // Finding the maximum and the minimum element // from the modified array after the operations let min = Number.MAX_VALUE; let max = Number.MIN_VALUE; for (let i = 0; i <= MAX; i++) { if (arr1[i] > 0) { if (min > i) min = i; if (max < i) max = i; } } // Printing the max and the min element document.write(min + " " + max); } // Driver code let arr = [ 605, 986 ]; let n = arr.length; let k = 548, x = 569; xorOnSortedArray(arr, n, k, x); </script>
605 986
Complejidad temporal: O(n + k * MAX)
Espacio Auxiliar: O(MAX)
Publicación traducida automáticamente
Artículo escrito por Vidhayak_Chacha y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA