Ordenar solo números no primos de una array en orden creciente

Dada una array de N enteros. La tarea es imprimir la array ordenada de manera que todos los números primos permanezcan en el mismo lugar, ordenar solo los números no primos
Ejemplos
 

Input : arr[] = {10, 7, 6}
Output : 6 7 10

Input : arr[] = {100, 11, 500, 2, 17, 1}
Output : 1 11 100 2 17 500

Acercarse: 
 

  • Recorra la array, saque todos los números no primos y guárdelos en un vector.
  • Ahora, ordena el vector.
  • Luego, recorra la array nuevamente y verifique si un número es primo, si es así, imprímalo tal como es. De lo contrario, imprima un número del vector.

Para verificar si un número es primo o no, podemos usar la criba de eratóstenes .
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ program to sort only non primes
#include <bits/stdc++.h>
using namespace std;
 
// Create a boolean array "prime[0..n]" and initialize
// all entries it as true. A value in prime[i] will
// finally be false if i is Not a prime, else true.
bool prime[100005];
 
void SieveOfEratosthenes(int n)
{
 
    memset(prime, true, sizeof(prime));
 
    prime[1] = false;
 
    for (int p = 2; p * p <= n; p++) {
        // If prime[p] is not changed, then it is a prime
        if (prime[p] == true) {
            // Update all multiples of p
            for (int i = p * 2; i <= n; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to print the array such that
// only non primes are sorted
void sortedArray(int arr[], int n)
{
    SieveOfEratosthenes(100005);
 
    // vector v will store all non
    // prime numbers
    std::vector<int> v;
 
    // If not prime, insert into vector
    for (int i = 0; i < n; ++i) {
        if (prime[arr[i]] == 0)
            v.push_back(arr[i]);
    }
 
    // sorting vector of non primes
    sort(v.begin(), v.end());
 
    int j = 0;
    // print the required array
    for (int i = 0; i < n; ++i) {
        if (prime[arr[i]] == true)
            cout << arr[i] << " ";
        else {
            cout << v[j] << " ";
            j++;
        }
    }
}
 
// Driver Code
int main()
{
 
    int n = 6;
    int arr[] = { 100, 11, 500, 2, 17, 1 };
 
    sortedArray(arr, n);
 
    return 0;
}

Java

   
// Java program to sort only non primes
import java.util.*;
class solution
{
// Create a boolean array "prime[0..n]" and initialize
// all entries it as true. A value in prime[i] will
// finally be false if i is Not a prime, else true.
static boolean prime[] = new boolean[100006];
 
static void SieveOfEratosthenes(int n)
{
 
    for(int i=1;i<=n;i++)
    prime[i]=true;
    prime[1] = false;
 
    for (int p = 2; p * p <= n; p++) {
        // If prime[p] is not changed, then it is a prime
        if (prime[p] == true) {
            // Update all multiples of p
            for (int i = p * 2; i <= n; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to print the array such that
// only non primes are sorted
static void sortedArray(int arr[], int n)
{
    SieveOfEratosthenes(100005);
 
    // vector v will store all non
    // prime numbers
    Vector<Integer> v = new Vector<Integer>();
 
    // If not prime, insert into vector
    for (int i = 0; i < n; ++i) {
        if (prime[arr[i]]==false)
            v.add(arr[i]);
    }
 
    // sorting vector of non primes
    Collections.sort(v);
 
    int j = 0;
    // print the required array
    for (int i = 0; i < n; ++i) {
        if (prime[arr[i]] == true)
            System.out.print( arr[i] + " ");
        else {
            System.out.print( v.get(j) + " ");
            j++;
        }
    }
}
 
// Driver Code
public static void main(String args[])
{
 
    int n = 6;
    int arr[] = { 100, 11, 500, 2, 17, 1 };
 
    sortedArray(arr, n);
 
}
}
//contributed by Arnab Kundu

Python3

# Python3 program to sort only
# non primes
 
# from math import sqrt method
from math import sqrt
 
# Create a boolean array "prime[0..n]"
# and initialize all entries it as true.
# A value in prime[i] will  finally be false
# if i is Not a prime, else true.
prime = [0] * 100005
 
def SieveOfEratosthenes(n) :
 
    for i in range(len(prime)) :
        prime[i] = True
         
    prime[1] = False
 
    for p in range(2, int(sqrt(n)) + 1) :
         
        # If prime[p] is not changed,
        # then it is a prime    
        if prime[p] == True :
 
            # Update all multiples of p
            for i in range(p * 2, n, p) :
                prime[i] = False
 
 
# Function to print the array such that
# only non primes are sorted
def sortedArray(arr, n) :
     
    SieveOfEratosthenes(100005)
 
    # list v will store all non
    # prime numbers
    v = []
 
    # If not prime, insert into list
    for i in range(n) :
        if prime[arr[i]] == 0 :
            v.append(arr[i])
 
    # sorting list of non primes
    v.sort()
 
    j = 0
 
    # print the required array
    for i in range(n) :
 
        if prime[arr[i]] == True :
            print(arr[i],end = " ")
        else :
            print(v[j],end = " ")
            j += 1
             
 
# Driver code
if __name__ == "__main__" :
 
    n = 6
    arr = [100, 11, 500, 2, 17, 1]
     
    sortedArray(arr, n)
     
# This code is contributed by
# ANKITRAI1

C#

// C# program to sort only non primes
using System;
using System.Collections.Generic;
 
class GFG
{
    // Create a boolean array "prime[0..n]"
    // and initialize all entries it as true.
    // A value in prime[i] will finally be
    // false if i is Not a prime, else true.
    static bool []prime = new bool[100006];
 
    static void SieveOfEratosthenes(int n)
    {
 
        for(int i = 1; i <= n; i++)
        prime[i] = true;
        prime[1] = false;
 
        for (int p = 2; p * p <= n; p++)
        {
            // If prime[p] is not changed, then it is a prime
            if (prime[p] == true)
            {
                // Update all multiples of p
                for (int i = p * 2; i <= n; i += p)
                    prime[i] = false;
            }
        }
    }
 
    // Function to print the array such that
    // only non primes are sorted
    static void sortedArray(int []arr, int n)
    {
        SieveOfEratosthenes(100005);
 
        // vector v will store all non
        // prime numbers
        List<int> v = new List<int>();
 
        // If not prime, insert into vector
        for (int i = 0; i < n; ++i)
        {
            if (prime[arr[i]] == false)
                v.Add(arr[i]);
        }
 
        // sorting vector of non primes
        v.Sort();
 
        int j = 0;
        // print the required array
        for (int i = 0; i < n; ++i)
        {
            if (prime[arr[i]] == true)
                Console.Write( arr[i] + " ");
            else
            {
                Console.Write( v[j] + " ");
                j++;
            }
        }
    }
 
    // Driver Code
    public static void Main()
    {
 
        int n = 6;
        int []arr = { 100, 11, 500, 2, 17, 1 };
 
        sortedArray(arr, n);
    }
}
 
/* This code contributed by PrinciRaj1992 */

Javascript

<script>
 
// JavaScript program to sort only non primes
 
// Create a boolean array "prime[0..n]" and initialize
// all entries it as true. A value in prime[i] will
// finally be false if i is Not a prime, else true.
prime = new Array(100005);
 
function SieveOfEratosthenes( n)
{
 
    prime.fill(true);
 
    prime[1] = false;
 
    for (var p = 2; p * p <= n; p++) {
        // If prime[p] is not changed, then it is a prime
        if (prime[p] == true) {
            // Update all multiples of p
            for (var i = p * 2; i <= n; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to print the array such that
// only non primes are sorted
function sortedArray(arr, n)
{
    SieveOfEratosthenes(100005);
 
    // vector v will store all non
    // prime numbers
    var v = [];
 
    // If not prime, insert into vector
    for (var i = 0; i < n; ++i) {
        if (prime[arr[i]] == 0)
            v.push(arr[i]);
    }
 
    // sorting vector of non primes
    v.sort();
 
    var j = 0;
    // print the required array
    for (var i = 0; i < n; ++i) {
        if (prime[arr[i]] == true)
            document.write( arr[i] + " ");
        else {
            document.write( v[j] + " ");
            j++;
        }
    }
}
var n = 6;
var arr = [ 100, 11, 500, 2, 17, 1 ];
sortedArray(arr, n);
 
// This code is contributed by SoumikMondal
 
</script>
Producción: 

1 11 100 2 17 500

 

Complejidad del tiempo: O(Nlog(N))
 

Publicación traducida automáticamente

Artículo escrito por Sanjit_Prasad y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *