PNL | Etiquetador brillante

  • La clase BrillTagger es un etiquetador basado en transformación . No es una subclase de SequentialBackoffTagger.
  • Además, utiliza una serie de reglas para corregir los resultados de un etiquetador inicial.
  • Estas reglas que sigue se basan en la puntuación. Esta puntuación es igual a la no. de errores que corrigen menos el no. de los nuevos errores que producen.

Código #1: Entrenamiento de una clase BrillTagger

# Loading Libraries
from nltk.tag import brill, brill_trainer
  
def train_brill_tagger(initial_tagger, train_sents, **kwargs):
    templates = [
            brill.Template(brill.Pos([-1])),
            brill.Template(brill.Pos([1])),
            brill.Template(brill.Pos([-2])),
            brill.Template(brill.Pos([2])),
            brill.Template(brill.Pos([-2, -1])),
            brill.Template(brill.Pos([1, 2])),
            brill.Template(brill.Pos([-3, -2, -1])),
            brill.Template(brill.Pos([1, 2, 3])),
            brill.Template(brill.Pos([-1]), brill.Pos([1])),
            brill.Template(brill.Word([-1])),
            brill.Template(brill.Word([1])),
            brill.Template(brill.Word([-2])),
            brill.Template(brill.Word([2])),
            brill.Template(brill.Word([-2, -1])),
            brill.Template(brill.Word([1, 2])),
            brill.Template(brill.Word([-3, -2, -1])),
            brill.Template(brill.Word([1, 2, 3])),
            brill.Template(brill.Word([-1]), brill.Word([1])),
            ]
      
    # Using BrillTaggerTrainer to train 
    trainer = brill_trainer.BrillTaggerTrainer(
            initial_tagger, templates, deterministic = True)
      
    return trainer.train(train_sents, **kwargs)

 
Código #2: Usemos el BrillTagger entrenado

from nltk.tag import brill, brill_trainer
from nltk.tag import DefaultTagger
from nltk.corpus import treebank
from tag_util import train_brill_tagger
  
# Initializing
default_tag = DefaultTagger('NN')
  
# initializing training and testing set    
train_data = treebank.tagged_sents()[:3000]
test_data = treebank.tagged_sents()[3000:]
  
initial_tag = backoff_tagger(
        train_data, [UnigramTagger, BigramTagger, 
                    TrigramTagger], backoff = default_tagger)
      
a = initial_tag.evaluate(test_data)
print ("Accuracy of Initial Tag : ", a)

Producción :

Accuracy of Initial Tag : 0.8806820634578028

 
Código #3:

brill_tag = train_brill_tagger(initial_tag, train_data)
b = brill_tag.evaluate(test_data)
  
print ("Accuracy of brill_tag : ", b)

Producción :

Accuracy of brill_tag : 0.8827541549751781

Publicación traducida automáticamente

Artículo escrito por Mohit Gupta_OMG 🙂 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *