Posibles parejas formando una terna pitagórica con un valor dado

Dado un entero C , la tarea es encontrar todos los pares posibles (A, B) en el rango [1, C) tales que: 

  1. UN 2 + B 2 = C 2
  2. A < B

Ejemplos: 

Entrada: C = 5 
Salida: (3, 4) 
Explicación: 
(3) 2 + (4) 2 = 9 + 16 = 25 = 5 2

Entrada: C = 25 
Salida: (15, 20), (7, 24) 
Explicación: Ambos pares cumplen las condiciones necesarias. 

Acercarse: 

  1. Compruebe todos los valores posibles de A y B en el rango [1, C).
  2. Almacene todos los pares que satisfagan las condiciones dadas.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program to compute
// all the possible
// pairs that forms a
// pythagorean triple
// with a given value
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate all
// possible pairs
vector<pair<int, int> > Pairs(int C)
{
    // Vector to store all the
    // possible pairs
    vector<pair<int, int> > ans;
 
    // Checking all the possible
    // pair in the range of [1, c)
    for (int i = 1; i < C; i++) {
        for (int j = i + 1; j < C;
             j++) {
 
            // If the pair satisfies
            // the condition push it
            // in the vector
            if ((i * i) + (j * j) == (C * C)) {
                ans.push_back(make_pair(i, j));
            }
        }
    }
    return ans;
}
 
// Driver Program
int main()
{
    int C = 13;
    vector<pair<int, int> > ans
        = Pairs(C);
 
    // If no valid pair exist
    if (ans.size() == 0) {
        cout << "No valid pair exist"
             << endl;
        return 0;
    }
 
    // Print all valid pairs
    for (auto i = ans.begin();
         i != ans.end(); i++) {
        cout << "(" << i->first << ", "
             << i->second << ")" << endl;
    }
 
    return 0;
}

Java

// Java program to compute all
// the possible pairs that forms
// a pythagorean triple with a
// given value
import java.util.*;
 
class GFG{
static class pair
{
    int first, second;
     
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to generate all
// possible pairs
static Vector<pair> Pairs(int C)
{
     
    // Vector to store all the
    // possible pairs
    Vector<pair> ans = new Vector<pair>();
 
    // Checking all the possible
    // pair in the range of [1, c)
    for(int i = 1; i < C; i++)
    {
       for(int j = i + 1; j < C; j++)
       {
            
          // If the pair satisfies
          // the condition push it
          // in the vector
          if ((i * i) + (j * j) == (C * C))
          {
              ans.add(new pair(i, j));
          }
       }
    }
    return ans;
}
 
// Driver code
public static void main(String[] args)
{
    int C = 13;
    Vector<pair> ans = Pairs(C);
 
    // If no valid pair exist
    if (ans.size() == 0)
    {
        System.out.print("No valid pair " +
                         "exist" + "\n");
        return;
    }
 
    // Print all valid pairs
    for(pair i:ans)
    {
       System.out.print("(" + i.first +
                       ", " + i.second +
                        ")" + "\n");
    }
}
}
 
// This code is contributed by gauravrajput1

Python3

# Python3 program to compute all
# the possible pairs that forms a
# pythagorean triple with a given value
 
# Function to generate all
# possible pairs
def Pairs(C):
 
    # Vector to store all the
    # possible pairs
    ans = []
   
    # Checking all the possible
    # pair in the range of [1, c)
    for i in range(C):
        for j in range(i + 1, C):
   
            # If the pair satisfies
            # the condition push it
            # in the vector
            if ((i * i) + (j * j) == (C * C)):
                ans.append([i, j])
             
    return ans;
     
# Driver code
if __name__=="__main__":
     
    C = 13;
    ans = Pairs(C);
   
    # If no valid pair exist
    if (len(ans) == 0):
        print("No valid pair exist")
        exit()
   
    # Print all valid pairs
    for i in range(len(ans)):
        print("(" + str(ans[i][0]) +
             ", " + str(ans[i][1]) + ")")
 
# This code is contributed by rutvik_56

C#

// C# program to compute all
// the possible pairs that forms
// a pythagorean triple with a
// given value
using System;
using System.Collections.Generic;
 
class GFG{
class pair
{
    public int first, second;
     
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to generate all
// possible pairs
static List<pair> Pairs(int C)
{
     
    // List to store all the
    // possible pairs
    List<pair> ans = new List<pair>();
 
    // Checking all the possible
    // pair in the range of [1, c)
    for(int i = 1; i < C; i++)
    {
        for(int j = i + 1; j < C; j++)
        {
                 
            // If the pair satisfies
            // the condition push it
            // in the vector
            if ((i * i) + (j * j) == (C * C))
            {
                ans.Add(new pair(i, j));
            }
        }
    }
    return ans;
}
 
// Driver code
public static void Main(String[] args)
{
    int C = 13;
    List<pair> ans = Pairs(C);
 
    // If no valid pair exist
    if (ans.Count == 0)
    {
        Console.Write("No valid pair " +
                      "exist" + "\n");
        return;
    }
 
    // Print all valid pairs
    foreach(pair i in ans)
    {
    Console.Write("(" + i.first +
                 ", " + i.second +
                  ")" + "\n");
    }
}
}
 
// This code is contributed by PrinciRaj1992

Javascript

<script>
 
// Javascript program to compute
// all the possible
// pairs that forms a
// pythagorean triple
// with a given value
 
// Function to generate all
// possible pairs
function Pairs(C)
{
    // Vector to store all the
    // possible pairs
    var ans = [];
 
    // Checking all the possible
    // pair in the range of [1, c)
    for (var i = 1; i < C; i++) {
        for (var j = i + 1; j < C;
             j++) {
 
            // If the pair satisfies
            // the condition push it
            // in the vector
            if ((i * i) + (j * j) == (C * C)) {
                ans.push([i, j]);
            }
        }
    }
    return ans;
}
 
// Driver Program
var C = 13;
var ans
    = Pairs(C);
     
// If no valid pair exist
if (ans.length == 0) {
    document.write( "No valid pair exist<br>");
}
 
// Print all valid pairs
ans.forEach(x => {
     
    document.write( "(" + x[0] + ", "
         + x[1] + ")" + "<br>");
});
 
// This code is contributed by noob2000.
</script>
Producción: 

(5, 12)

 

Complejidad del Tiempo: O(C 2 )
 

Publicación traducida automáticamente

Artículo escrito por thakurabhaysingh445 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *