Producto del conteo de bits establecidos presentes en representaciones binarias de elementos en una array

Dada una array arr[] que consta de N enteros, la tarea es encontrar el producto del recuento de bits establecidos en la representación binaria de cada elemento de la array .

Ejemplos:

Entrada: arr[] = {3, 2, 4, 1, 5}
Salida: 4
Explicación:
La representación binaria de los elementos de la array son {3, 2, 4, 1, 5} son {“11”, “10”, “100”, “1”, “101”} respectivamente.
Por lo tanto, el producto del conteo de bits establecidos = (2 * 1 * 1 * 1 * 2) = 4.

Entrada: arr[] = {10, 11, 12}
Salida: 12

Enfoque: el problema dado se puede resolver contando el total de bits en la representación binaria de cada elemento del arreglo. Siga los pasos a continuación para resolver el problema:

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the
// set bits in an integer
int countbits(int n)
{
    // Stores the count of set bits
    int count = 0;
 
    // Iterate while N is not equal to 0
    while (n != 0) {
 
        // Increment count by 1
        if (n & 1)
            count++;
 
        // Divide N by 2
        n = n / 2;
    }
 
    // Return the total count obtained
    return count;
}
 
// Function to find the product
// of count of set bits present
// in each element of an array
int BitProduct(int arr[], int N)
{
    // Stores the resultant product
    int product = 1;
 
    // Traverse the array arr[]
    for (int i = 0; i < N; i++) {
 
        // Stores the count
        // of set bits of arr[i]
        int bits = countbits(arr[i]);
 
        // Update the product
        product *= bits;
    }
 
    // Return the resultant product
    return product;
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 2, 4, 1, 5 };
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << BitProduct(arr, N);
 
    return 0;
}

Java

// java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
public class GFG {
 
    // Function to count the
    // set bits in an integer
    static int countbits(int n)
    {
        // Stores the count of set bits
        int count = 0;
 
        // Iterate while N is not equal to 0
        while (n != 0) {
 
            // Increment count by 1
            if ((n & 1) != 0)
                count++;
 
            // Divide N by 2
            n = n / 2;
        }
 
        // Return the total count obtained
        return count;
    }
 
    // Function to find the product
    // of count of set bits present
    // in each element of an array
    static int BitProduct(int arr[], int N)
    {
       
        // Stores the resultant product
        int product = 1;
 
        // Traverse the array arr[]
        for (int i = 0; i < N; i++) {
 
            // Stores the count
            // of set bits of arr[i]
            int bits = countbits(arr[i]);
 
            // Update the product
            product *= bits;
        }
 
        // Return the resultant product
        return product;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 3, 2, 4, 1, 5 };
        int N = arr.length;
        System.out.print(BitProduct(arr, N));
    }
}
 
// This code is contributed by Kingash.

Python3

# Python3 program for the above approach
 
# Function to count the
# set bits in an integer
def countbits(n):
   
    # Stores the count of set bits
    count = 0
 
    # Iterate while N is not equal to 0
    while (n != 0):
 
        # Increment count by 1
        if (n & 1):
            count += 1
 
        # Divide N by 2
        n = n // 2
 
    # Return the total count obtained
    return count
 
# Function to find the product
# of count of set bits present
# in each element of an array
def BitProduct(arr, N):
   
    # Stores the resultant product
    product = 1
 
    # Traverse the array arr[]
    for i in range(N):
       
        # Stores the count
        # of set bits of arr[i]
        bits = countbits(arr[i])
 
        # Update the product
        product *= bits
 
    # Return the resultant product
    return product
 
# Driver Code
if __name__ == '__main__':
    arr = [3, 2, 4, 1, 5]
    N = len(arr)
    print(BitProduct(arr, N))
 
    # This code is contributed by mohit kumar 29.

C#

// C# program for the above approach
using System;
 
public class GFG {
 
    // Function to count the
    // set bits in an integer
    static int countbits(int n)
    {
        // Stores the count of set bits
        int count = 0;
 
        // Iterate while N is not equal to 0
        while (n != 0) {
 
            // Increment count by 1
            if ((n & 1) != 0)
                count++;
 
            // Divide N by 2
            n = n / 2;
        }
 
        // Return the total count obtained
        return count;
    }
 
    // Function to find the product
    // of count of set bits present
    // in each element of an array
    static int BitProduct(int[] arr, int N)
    {
 
        // Stores the resultant product
        int product = 1;
 
        // Traverse the array arr[]
        for (int i = 0; i < N; i++) {
 
            // Stores the count
            // of set bits of arr[i]
            int bits = countbits(arr[i]);
 
            // Update the product
            product *= bits;
        }
 
        // Return the resultant product
        return product;
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int[] arr = { 3, 2, 4, 1, 5 };
        int N = arr.Length;
        Console.Write(BitProduct(arr, N));
    }
}
 
// This code is contributed by ukasp.

Javascript

<script>
 
// Javascript program for the above approach
 
 
// Function to count the
// set bits in an integer
function countbits( n)
{
    // Stores the count of set bits
    let count = 0;
 
    // Iterate while N is not equal to 0
    while (n != 0) {
 
        // Increment count by 1
        if ((n & 1) != 0)
            count++;
 
        // Divide N by 2
        n = Math.floor(n / 2);
        }
 
    // Return the total count obtained
    return count;
}
 
// Function to find the product
// of count of set bits present
// in each element of an array
function BitProduct( arr, N)
{
 
    // Stores the resultant product
    let product = 1;
 
    // Traverse the array arr[]
    for (let i = 0; i < N; i++) {
 
        // Stores the count
        // of set bits of arr[i]
        let bits = countbits(arr[i]);
 
        // Update the product
        product *= bits;
    }
 
    // Return the resultant product
    return product;
}
 
 
// Driver Code
 
let arr = [ 3, 2, 4, 1, 5 ];
let N = arr.length;
document.write(BitProduct(arr, N));
 
</script>
Producción: 

4

 

Complejidad de tiempo: O (N * log M), M es el elemento máximo de la array .
Espacio Auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por shivammahajancse y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *