Dados dos enteros n y k. Encuentre la posición del enésimo múltiplo de K en la serie de Fibonacci.
Ejemplos:
Input : k = 2, n = 3 Output : 9 3'rd multiple of 2 in Fibonacci Series is 34 which appears at position 9. Input : k = 4, n = 5 Output : 30 5'th multiple of 4 in Fibonacci Series is 832040 which appears at position 30.
Una solución eficiente se basa en la siguiente propiedad interesante.
La serie de Fibonacci siempre es periódica bajo representación modular. A continuación se muestran ejemplos.
F (mod 2) = 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 Here 0 is repeating at every 3rd index and the cycle repeats at every 3rd index. F (mod 3) = 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2 Here 0 is repeating at every 4th index and the cycle repeats at every 8th index. F (mod 4) = 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0 Here 0 is repeating at every 6th index and the cycle repeats at every 6th index. F (mod 5) = 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0 Here 0 is repeating at every 5th index and the cycle repeats at every 20th index. F (mod 6) = 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 0, 1, 1, 2, 3, 5, 2 Here 0 is repeating at every 12th index and the cycle repeats at every 24th index. F (mod 7) = 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6 Here 0 is repeating at every 8th index and the cycle repeats at every 16th index. F (mod 8) = 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0 Here 0 is repeating at every 6th index and the cycle repeats at every 12th index. F (mod 9) = 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 0, 1, 1, 2, 3, 5, 8 Here 0 is repeating at every 12th index and the cycle repeats at every 24th index. F (mod 10) = 1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, 7, 4, 1, 5, 6, 1, 7, 8, 5, 3, 8, 1, 9, 0. Here 0 is repeating at every 15th index and the cycle repeats at every 60th index.
C++
// C++ program to find position of n'th multiple // of a number k in Fibonacci Series #include <bits/stdc++.h> using namespace std; const int MAX = 1000; // Returns position of n'th multiple of k in // Fibonacci Series int findPosition(int k, int n) { // Iterate through all fibonacci numbers unsigned long long int f1 = 0, f2 = 1, f3; for (int i = 2; i <= MAX; i++) { f3 = f1 + f2; f1 = f2; f2 = f3; // Found first multiple of k at position i if (f2 % k == 0) // n'th multiple would be at position n*i // using Periodic property of Fibonacci // numbers under modulo. return n * i; } } // Driver Code int main() { int n = 5, k = 4; cout << "Position of n'th multiple of k" << " in Fibonacci Series is " << findPosition(k, n) << endl; return 0; }
Producción:
Position of n'th multiple of k in Fibonacci Series is 30
Complejidad de tiempo: O (1000), el código se ejecutará en un tiempo constante.
Espacio auxiliar: O(1), no se requiere espacio adicional, por lo que es una constante.
Consulte el artículo completo sobre el enésimo múltiplo de un número en la serie de Fibonacci para obtener más detalles.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA