Programa C++ para maximizar el recuento de los mismos elementos correspondientes en permutaciones dadas usando rotaciones cíclicas

Dadas dos permutaciones P1 y P2 de números de 1 a N , la tarea es encontrar el recuento máximo de los mismos elementos correspondientes en las permutaciones dadas realizando un desplazamiento cíclico hacia la izquierda o hacia la derecha en P1
Ejemplos: 

Entrada: P1 = [5 4 3 2 1], P2 = [1 2 3 4 5] 
Salida:
Explicación: 
Tenemos un par coincidente en el índice 2 para el elemento 3.
Entrada: P1 = [1 3 5 2 4 6] , P2 = [1 5 2 4 3 6] 
Salida:
Explicación: 
el desplazamiento cíclico de la segunda permutación hacia la derecha daría 6 1 5 2 4 3, y obtenemos una coincidencia de 5, 2, 4. Por lo tanto, la respuesta es 3 parejas coincidentes. 
 

Enfoque ingenuo: El enfoque ingenuo consiste en verificar cada cambio posible en la dirección izquierda y derecha, contar el número de pares coincidentes recorriendo todas las permutaciones formadas. 
Complejidad de tiempo: O(N 2
Espacio auxiliar: O(1)
Enfoque eficiente: El enfoque ingenuo anterior se puede optimizar. La idea es que cada elemento almacene la menor distancia entre las posiciones de este elemento desde los lados izquierdo y derecho en arrays separadas. Por lo tanto, la solución al problema se calculará como la frecuencia máxima de un elemento de las dos arrays separadas. A continuación se muestran los pasos:  

  1. Almacene la posición de todos los elementos de la permutación P2 en una array (digamos store[] ).
  2. Para cada elemento en la permutación P1 , haga lo siguiente: 
    • Encuentre la diferencia (digamos diff ) entre la posición del elemento actual en P2 con la posición en P1 .
    • Si diff es menor que 0, actualice diff a (N – diff) .
    • Almacene la frecuencia de la diferencia actual en un mapa .
  3. Después de los pasos anteriores, la frecuencia máxima almacenada en el mapa es el número máximo de elementos iguales después de la rotación en P1 .

A continuación se muestra la implementación del enfoque anterior:
 

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to maximize the matching
// pairs between two permutation
// using left and right rotation
int maximumMatchingPairs(int perm1[],
                         int perm2[],
                         int n)
{
    // Left array store distance of element
    // from left side and right array store
    // distance of element from right side
    int left[n], right[n];
 
    // Map to store index of elements
    map<int, int> mp1, mp2;
    for (int i = 0; i < n; i++) {
        mp1[perm1[i]] = i;
    }
    for (int j = 0; j < n; j++) {
        mp2[perm2[j]] = j;
    }
 
    for (int i = 0; i < n; i++) {
 
        // idx1 is index of element
        // in first permutation
 
        // idx2 is index of element
        // in second permutation
        int idx2 = mp2[perm1[i]];
        int idx1 = i;
 
        if (idx1 == idx2) {
 
            // If element if present on same
            // index on both permutations then
            // distance is zero
            left[i] = 0;
            right[i] = 0;
        }
        else if (idx1 < idx2) {
 
            // Calculate distance from left
            // and right side
            left[i] = (n - (idx2 - idx1));
            right[i] = (idx2 - idx1);
        }
        else {
 
            // Calculate distance from left
            // and right side
            left[i] = (idx1 - idx2);
            right[i] = (n - (idx1 - idx2));
        }
    }
 
    // Maps to store frequencies of elements
    // present in left and right arrays
    map<int, int> freq1, freq2;
    for (int i = 0; i < n; i++) {
        freq1[left[i]]++;
        freq2[right[i]]++;
    }
 
    int ans = 0;
 
    for (int i = 0; i < n; i++) {
 
        // Find maximum frequency
        ans = max(ans, max(freq1[left[i]],
                           freq2[right[i]]));
    }
 
    // Return the result
    return ans;
}
 
// Driver Code
int main()
{
    // Given permutations P1 and P2
    int P1[] = { 5, 4, 3, 2, 1 };
    int P2[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(P1) / sizeof(P1[0]);
 
    // Function Call
    cout << maximumMatchingPairs(P1, P2, n);
    return 0;
}
Producción: 

1

 

Complejidad de Tiempo: O(N) 
Espacio Auxiliar: O(N), ya que se ha tomado N espacio extra

¡ Consulte el artículo completo sobre Maximizar el recuento de los mismos elementos correspondientes en permutaciones dadas usando rotaciones cíclicas para obtener más detalles!

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *