Programa Java para contar rotaciones divisible por 8

Dado un gran número positivo como string, cuente todas las rotaciones del número dado que son divisibles por 8.

Ejemplos: 

Input: 8
Output: 1

Input: 40
Output: 1
Rotation: 40 is divisible by 8
          04 is not divisible by 8

Input : 13502
Output : 0
No rotation is divisible by 8

Input : 43262488612
Output : 4

Enfoque: para números grandes, es difícil rotar y dividir cada número por 8. Por lo tanto, se usa la propiedad de ‘divisibilidad por 8’ que dice que un número es divisible por 8 si los últimos 3 dígitos del número son divisibles por 8. Aquí en realidad, no rotamos el número y verificamos la divisibilidad de los últimos 8 dígitos, sino que contamos una secuencia consecutiva de 3 dígitos (en forma circular) que son divisibles por 8.

Ilustración:  

Consider a number 928160
Its rotations are 928160, 092816, 609281, 
160928, 816092, 281609.
Now form consecutive sequence of 3-digits from 
the original number 928160 as mentioned in the 
approach. 
3-digit: (9, 2, 8), (2, 8, 1), (8, 1, 6), 
(1, 6, 0),(6, 0, 9), (0, 9, 2)
We can observe that the 3-digit number formed by 
the these sets, i.e., 928, 281, 816, 160, 609, 092, 
are present in the last 3 digits of some rotation.
Thus, checking divisibility of these 3-digit numbers
gives the required number of rotations. 

Java

// Java program to count all
// rotations divisible by 8
import java.io.*;
 
class GFG
{
    // function to count of all
    // rotations divisible by 8
    static int countRotationsDivBy8(String n)
    {
        int len = n.length();
        int count = 0;
     
        // For single digit number
        if (len == 1) {
            int oneDigit = n.charAt(0) - '0';
            if (oneDigit % 8 == 0)
                return 1;
            return 0;
        }
     
        // For two-digit numbers
        // (considering all pairs)
        if (len == 2) {
     
            // first pair
            int first = (n.charAt(0) - '0') *
                        10 + (n.charAt(1) - '0');
     
            // second pair
            int second = (n.charAt(1) - '0') *
                         10 + (n.charAt(0) - '0');
     
            if (first % 8 == 0)
                count++;
            if (second % 8 == 0)
                count++;
            return count;
        }
     
        // considering all three-digit sequences
        int threeDigit;
        for (int i = 0; i < (len - 2); i++)
        {
            threeDigit = (n.charAt(i) - '0') * 100 +
                        (n.charAt(i + 1) - '0') * 10 +
                        (n.charAt(i + 2) - '0');
            if (threeDigit % 8 == 0)
                count++;
        }
     
        // Considering the number formed by the
        // last digit and the first two digits
        threeDigit = (n.charAt(len - 1) - '0') * 100 +
                    (n.charAt(0) - '0') * 10 +
                    (n.charAt(1) - '0');
     
        if (threeDigit % 8 == 0)
            count++;
     
        // Considering the number formed by the last
        // two digits and the first digit
        threeDigit = (n.charAt(len - 2) - '0') * 100 +
                    (n.charAt(len - 1) - '0') * 10 +
                    (n.charAt(0) - '0');
        if (threeDigit % 8 == 0)
            count++;
     
        // required count of rotations
        return count;
    }
     
    // Driver program
    public static void main (String[] args)
    {
        String n = "43262488612";
        System.out.println( "Rotations: "
                       +countRotationsDivBy8(n));
         
    }
}
 
// This code is contributed by vt_m.

Producción: 

Rotations: 4

Complejidad de tiempo: O(n), donde n es el número de dígitos en el número de entrada.
Espacio Auxiliar: O(1)

Consulte el artículo completo sobre rotaciones de conteo divisibles por 8 para obtener más detalles.

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *