Kite es algo así como rombo pero en Kite, los lados adyacentes son iguales y las diagonales generalmente no son iguales.
Método 1: cuando se dan ambas diagonales
Si se dan las diagonales d1 y d2 de la cometa, entonces el área de una cometa es la mitad del producto de ambas diagonales, es decir
Ejemplo:
Input: d1 = 4, d2 = 6 Output: Area of Kite = 12 Input: d1 = 5, d2 = 7 Output: Area of Kite = 17.5
Enfoque: en este método simplemente usamos la fórmula anterior.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the area of kite float areaOfKite(int d1, int d2) { // use above formula float area = (d1 * d2) / 2; return area; } // Driver code int main() { int d1 = 4, d2 = 6; cout << "Area of Kite = " << areaOfKite(d1, d2); return 0; }
Java
// Java implementation of the approach class GFG { // Function to return the area of kite static float areaOfKite(int d1, int d2) { // Use above formula float area = (d1 * d2) / 2; return area; } // Driver code public static void main(String[] args) { int d1 = 4, d2 = 6; System.out.println("Area of Kite = " + areaOfKite(d1, d2)); } } // This code is contributed by Rajput-Ji
Python3
# Python implementation of the approach # Function to return the area of kite def areaOfKite(d1, d2): # use above formula area = (d1 * d2) / 2; return area; # Driver code d1 = 4; d2 = 6; print("Area of Kite = ", areaOfKite(d1, d2)); # This code is contributed by Rajput-Ji
C#
// C# implementation of the approach using System; class GFG { // Function to return the area of kite static float areaOfKite(int d1, int d2) { // Use above formula float area = (d1 * d2) / 2; return area; } // Driver code public static void Main() { int d1 = 4, d2 = 6; Console.WriteLine("Area of Kite = " + areaOfKite(d1, d2)); } } // This code is contributed by anuj_67..
Javascript
<script> // Javascript implementation of the approach // Function to return the area of kite function areaOfKite(d1, d2) { // use above formula var area = (d1 * d2) / 2; return area; } // Driver code var d1 = 4, d2 = 6; document.write("Area of Kite = " + areaOfKite(d1, d2)); </script>
Area of Kite = 12
Complejidad de tiempo: O(1)
Espacio Auxiliar: O(1)
Método 2: Cuando se dan los lados a, b y el ángulo:
Cuando se dan los lados desiguales de la cometa a y b y el ángulo Θ incluido entre ellos, entonces
Ejemplo:
Input: a = 4, b = 7, θ = 78 Output: Area of Kite = 27.3881 Input: a = 6, b = 9, θ = 83 Output: Area of Kite = 53.5975
Enfoque: en este método simplemente usamos la fórmula anterior.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> #define PI 3.14159 / 180 using namespace std; // Function to return the area of the kite float areaOfKite(int a, int b, double angle) { // convert angle degree to radians angle = angle * PI; // use above formula double area = a * b * sin(angle); return area; } // Driver code int main() { int a = 4, b = 7, angle = 78; cout << "Area of Kite = " << areaOfKite(a, b, angle); return 0; }
Java
// Java implementation of the approach import java.io.*; class GFG { static double PI = (3.14159 / 180); // Function to return the area of the kite static float areaOfKite(int a, int b, double angle) { // convert angle degree to radians angle = angle * PI; // use above formula double area = a * b * Math.sin(angle); return (float)area; } // Driver code public static void main (String[] args) { int a = 4, b = 7, angle = 78; System.out.println ("Area of Kite = " + areaOfKite(a, b, angle)); } } // This code is contributed by jit_t.
Python3
# Python implementation of the approach import math PI = 3.14159 / 180; # Function to return the area of the kite def areaOfKite(a, b, angle): # convert angle degree to radians angle = angle * PI; # use above formula area = a * b * math.sin(angle); return area; # Driver code a = 4; b = 7; angle = 78; print("Area of Kite = ", areaOfKite(a, b, angle)); # This code contributed by PrinciRaj1992
C#
// C# implementation of the approach using System; class GFG { static double PI = (3.14159 / 180); // Function to return the area of the kite static float areaOfKite(int a, int b, double angle) { // convert angle degree to radians angle = angle * PI; // use above formula double area = a * b * Math.Sin(angle); return (float)area; } // Driver code static public void Main () { int a = 4, b = 7, angle = 78; Console.WriteLine("Area of Kite = " + areaOfKite(a, b, angle)); } } // This code is contributed by ajit
Javascript
<script> // Javascript implementation of the approach var PI = 3.14159 / 180 // Function to return the area of the kite function areaOfKite(a, b, angle) { // convert angle degree to radians angle = angle * PI; // use above formula var area = a * b * Math.sin(angle); return area.toFixed(4); } // Driver code var a = 4, b = 7, angle = 78; document.write( "Area of Kite = " + areaOfKite(a, b, angle)); // This code is contributed by rutvik_56. </script>
Area of Kite = 27.3881
Complejidad de tiempo: O(1)
Espacio Auxiliar: O(1)