Programa para calcular el valor de nCr Eficientemente

Dados dos números n, r ( n>=r ). La tarea es encontrar el valor de C(n, r) para un valor grande de n.

Ejemplos: 

Input: n = 30, r = 15
Output: 155117520
C(30, 15) is 155117520 by  30!/((30-15)!*15!)


Input: n = 50, r = 25
Output: 126410606437752

Enfoque: se puede crear un código simple con el siguiente conocimiento de que: 

C(n, r) = [n * (n-1) * .... * (n-r+1)] / [r * (r-1) * .... * 1]

Sin embargo, para valores grandes de n, r, los productos pueden desbordarse, por lo que durante cada iteración dividimos las variables actuales que mantienen el valor de los productos por su gcd. 

A continuación se muestra la implementación requerida: 

C++

// C++ implementation to find nCr
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the nCr
void printNcR(int n, int r)
{
 
    // p holds the value of n*(n-1)*(n-2)...,
    // k holds the value of r*(r-1)...
    long long p = 1, k = 1;
 
    // C(n, r) == C(n, n-r),
    // choosing the smaller value
    if (n - r < r)
        r = n - r;
 
    if (r != 0) {
        while (r) {
            p *= n;
            k *= r;
 
            // gcd of p, k
            long long m = __gcd(p, k);
 
            // dividing by gcd, to simplify
            // product division by their gcd
            // saves from the overflow
            p /= m;
            k /= m;
 
            n--;
            r--;
        }
 
        // k should be simplified to 1
        // as C(n, r) is a natural number
        // (denominator should be 1 ) .
    }
 
    else
        p = 1;
 
    // if our approach is correct p = ans and k =1
    cout << p << endl;
}
 
// Driver code
int main()
{
    int n = 50, r = 25;
 
    printNcR(n, r);
 
    return 0;
}

Java

// Java implementation to find nCr
 
class GFG {
 
    // Function to find the nCr
    static void printNcR(int n, int r)
    {
 
        // p holds the value of n*(n-1)*(n-2)...,
        // k holds the value of r*(r-1)...
        long p = 1, k = 1;
 
        // C(n, r) == C(n, n-r),
        // choosing the smaller value
        if (n - r < r) {
            r = n - r;
        }
 
        if (r != 0) {
            while (r > 0) {
                p *= n;
                k *= r;
 
                // gcd of p, k
                long m = __gcd(p, k);
 
                // dividing by gcd, to simplify
                // product division by their gcd
                // saves from the overflow
                p /= m;
                k /= m;
 
                n--;
                r--;
            }
 
            // k should be simplified to 1
            // as C(n, r) is a natural number
            // (denominator should be 1 ) .
        }
        else {
            p = 1;
        }
 
        // if our approach is correct p = ans and k =1
        System.out.println(p);
    }
 
    static long __gcd(long n1, long n2)
    {
        long gcd = 1;
 
        for (int i = 1; i <= n1 && i <= n2; ++i) {
            // Checks if i is factor of both integers
            if (n1 % i == 0 && n2 % i == 0) {
                gcd = i;
            }
        }
        return gcd;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 50, r = 25;
 
        printNcR(n, r);
    }
}

Python3

# Python3 implementation to find nCr
 
from math import *
 
# Function to find the nCr
 
 
def printNcR(n, r):
 
    # p holds the value of n*(n-1)*(n-2)...,
    # k holds the value of r*(r-1)...
    p = 1
    k = 1
 
    # C(n, r) == C(n, n-r),
    # choosing the smaller value
    if (n - r < r):
        r = n - r
 
    if (r != 0):
        while (r):
            p *= n
            k *= r
 
            # gcd of p, k
            m = gcd(p, k)
 
            # dividing by gcd, to simplify product
            # division by their gcd saves from
            # the overflow
            p //= m
            k //= m
 
            n -= 1
            r -= 1
 
        # k should be simplified to 1
        # as C(n, r) is a natural number
        # (denominator should be 1 )
 
    else:
        p = 1
 
    # if our approach is correct p = ans and k =1
    print(p)
 
 
# Driver code
if __name__ == "__main__":
    n = 50
    r = 25
 
    printNcR(n, r)
 
# this code is contributed by
# ChitraNayal

C#

// C# implementation to find nCr
 
using System;
 
public class GFG {
 
    // Function to find the nCr
    static void printNcR(int n, int r)
    {
 
        // p holds the value of n*(n-1)*(n-2)...,
        // k holds the value of r*(r-1)...
        long p = 1, k = 1;
 
        // C(n, r) == C(n, n-r),
        // choosing the smaller value
        if (n - r < r) {
            r = n - r;
        }
 
        if (r != 0) {
            while (r > 0) {
                p *= n;
                k *= r;
 
                // gcd of p, k
                long m = __gcd(p, k);
 
                // dividing by gcd, to simplify
                // product division by their gcd
                // saves from the overflow
                p /= m;
                k /= m;
 
                n--;
                r--;
            }
 
            // k should be simplified to 1
            // as C(n, r) is a natural number
            // (denominator should be 1 ) .
        }
        else {
            p = 1;
        }
 
        // if our approach is correct p = ans and k =1
        Console.WriteLine(p);
    }
 
    static long __gcd(long n1, long n2)
    {
        long gcd = 1;
 
        for (int i = 1; i <= n1 && i <= n2; ++i) {
            // Checks if i is factor of both integers
            if (n1 % i == 0 && n2 % i == 0) {
                gcd = i;
            }
        }
        return gcd;
    }
 
    // Driver code
    static public void Main()
    {
        int n = 50, r = 25;
        printNcR(n, r);
    }
    // This code is contributed by ajit.
}

PHP

<?php
// PHP implementation to find nCr
     
// Function to find the nCr
function printNcR($n, $r) {
 
        // p holds the value of n*(n-1)*(n-2)...,
        // k holds the value of r*(r-1)...
        $p = 1;
        $k = 1;
 
        // C(n, r) == C(n, n-r),
        // choosing the smaller value
        if ($n - $r < $r) {
            $r = $n - $r;
        }
 
        if ($r != 0) {
            while ($r > 0) {
                $p *= $n;
                $k *= $r;
 
                // gcd of p, k
                $m = __gcd($p, $k);
 
                // dividing by gcd, to simplify product
                // division by their gcd saves from the overflow
                $p /= $m;
                $k /= $m;
 
                $n--;
                $r--;
            }
 
            // k should be simplified to 1
            // as C(n, r) is a natural number
            // (denominator should be 1 ) .
        } else {
            $p = 1;
        }
 
        // if our approach is correct p = ans and k =1
        echo ($p);
    }
 
    function  __gcd($n1, $n2) {
         $gcd = 1;
 
        for ($i = 1; $i <= $n1 && $i <= $n2; ++$i) {
            // Checks if i is factor of both integers
            if ($n1 % $i == 0 && $n2 % $i == 0) {
                $gcd = $i;
            }
        }
        return $gcd;
    }
 
        // Driver code
        $n = 50;
        $r = 25;
        printNcR($n, $r);
 
 
//This code is contributed by Sachin.
 
?>

Javascript

<script>
 
// Javascript implementation to find nCr
 
function __gcd(n1, n2)
{
    var gcd = 1;
 
    for (var i = 1; i <= n1 && i <= n2; ++i) {
        // Checks if i is factor of both integers
        if (n1 % i == 0 && n2 % i == 0) {
            gcd = i;
        }
    }
    return gcd;
}
 
// Function to find the nCr
function printNcR(n, r)
{
 
    // p holds the value of n*(n-1)*(n-2)...,
    // k holds the value of r*(r-1)...
    var p = 1, k = 1;
 
    // C(n, r) == C(n, n-r),
    // choosing the smaller value
    if (n - r < r)
        r = n - r;
 
    if (r != 0) {
        while (r) {
            p *= n;
            k *= r;
 
            // gcd of p, k
            var m = __gcd(p, k);
 
            // dividing by gcd, to simplify
            // product division by their gcd
            // saves from the overflow
            p /= m;
            k /= m;
 
            n--;
            r--;
        }
 
        // k should be simplified to 1
        // as C(n, r) is a natural number
        // (denominator should be 1 ) .
    }
 
    else
        p = 1;
 
    // if our approach is correct p = ans and k =1
    document.write(p);
}
 
// Driver code
var n = 50, r = 25;
printNcR(n, r);
 
</script>
Producción

126410606437752

Complejidad de Tiempo: O( R Log N) 
Espacio Auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por Dsxv y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *