Programa para calcular el valor de sen(x) y cos(x) usando Expansion – Part 1

Dado un valor de ángulo, debe calcular los valores de Sin y Cos correspondientes a él.

Para la función sen

Ejemplos:  

Input : 90
Output : 1

{\displaystyle Sin(x)=\sum_{k=0}^{\infty } \frac {(-1)^k}{(2k+1)!}x^{2k+1}=x-\frac {x^3}{3!} + \frac {x^5}{5!} - .........}

C++

// CPP code for implementing sin function
#include <iostream>
#include <math.h>
using namespace std;
 
// Function for calculating sin value
void cal_sin(float n)
{   
    float accuracy = 0.0001, denominator, sinx, sinval;
     
    // Converting degrees to radian
    n = n * (3.142 / 180.0);
 
    float x1 = n;
     
    // maps the sum along the series
    sinx = n;        
     
    // holds the actual value of sin(n)
    sinval = sin(n);   
    int i = 1;
    do
    {
        denominator = 2 * i * (2 * i + 1);
        x1 = -x1 * n * n / denominator;
        sinx = sinx + x1;
        i = i + 1;
    } while (accuracy <= fabs(sinval - sinx));
    cout << sinx;
}
 
// Main function
int main()
{
    float n = 90;
    cal_sin(n);
    return 0;
}

Java

import static java.lang.Math.sin;
 
// JAVA code for implementing sin function
 
class GFG {
 
// Function for calculating sin value
static void cal_sin(float n)
{    
    float accuracy = (float) 0.0001, denominator, sinx, sinval;
     
    // Converting degrees to radian
    n = n * (float)(3.142 / 180.0);
 
    float x1 = n;
     
    // maps the sum along the series
    sinx = n;        
     
    // holds the actual value of sin(n)
    sinval = (float)sin(n);    
    int i = 1;
    do
    {
        denominator = 2 * i * (2 * i + 1);
        x1 = -x1 * n * n / denominator;
        sinx = sinx + x1;
        i = i + 1;
    } while (accuracy <= sinval - sinx);
       System.out.println(sinx);
}
 
// Main function
 
 
    public static void main(String[] args) {
        float n = 90;
    cal_sin(n);
     
    }
}

Python3

# Python3 code for implementing
# sin function
import math;
 
# Function for calculating sin value
def cal_sin(n):
 
    accuracy = 0.0001;
     
    # Converting degrees to radian
    n = n * (3.142 / 180.0);
     
    x1 = n;
     
    # maps the sum along the series
    sinx = n;    
     
    # holds the actual value of sin(n)
    sinval = math.sin(n);
    i = 1;
    while(True):
     
        denominator = 2 * i * (2 * i + 1);
        x1 = -x1 * n * n / denominator;
        sinx = sinx + x1;
        i = i + 1;
        if(accuracy <= abs(sinval - sinx)):
            break;
         
    print(round(sinx));
 
# Driver Code
n = 90;
cal_sin(n);
     
# This code is contributed by mits

C#

// C# code for implementing sin function
using System;
 
class GFG
{
// Function for calculating sin value
static void cal_sin(float n)
{
    float accuracy = (float) 0.0001,
                      denominator, sinx, sinval;
     
    // Converting degrees to radian
    n = n * (float)(3.142 / 180.0);
 
    float x1 = n;
     
    // maps the sum along the series
    sinx = n;    
     
    // holds the actual value of sin(n)
    sinval = (float)Math.Sin(n);    
    int i = 1;
    do
    {
        denominator = 2 * i * (2 * i + 1);
        x1 = -x1 * n * n / denominator;
        sinx = sinx + x1;
        i = i + 1;
    } while (accuracy <= sinval - sinx);
     
    Console.WriteLine(sinx);
}
 
// Driver Code
static public void Main ()
{
    float n = 90;
    cal_sin(n);
}
}
 
// This code is contributed by jit_t

PHP

<?php
// PHP code for implementing sin function
 
// Function for calculating sin value
function cal_sin($n)
{
    $accuracy = 0.0001;
     
    // Converting degrees to radian
    $n = $n * (3.142 / 180.0);
 
    $x1 = $n;
     
    // maps the sum along the series
    $sinx = $n;        
     
    // holds the actual value of sin(n)
    $sinval = sin($n);
    $i = 1;
    do
    {
        $denominator = 2 * $i * (2 * $i + 1);
        $x1 = -$x1 * $n * $n / $denominator;
        $sinx = $sinx + $x1;
        $i = $i + 1;
    } while ($accuracy <= abs($sinval - $sinx));
    echo round($sinx);
}
 
// Main function
 
    $n = 90;
    cal_sin($n);
     
// This code is contributed by mits
?>

Javascript

<script>
 
// javascript code for implementing sin function
 
    // Function for calculating sin value
    function cal_sin(n) {
        var accuracy =  0.0001, denominator, sinx, sinval;
 
        // Converting degrees to radian
        n = n *  (3.142 / 180.0);
 
        var x1 = n;
 
        // maps the sum along the series
        sinx = n;
 
        // holds the actual value of sin(n)
        sinval =  Math.sin(n);
        var i = 1;
        do {
            denominator = 2 * i * (2 * i + 1);
            x1 = -x1 * n * n / denominator;
            sinx = (sinx + x1);
            i = i + 1;
        } while (accuracy <= sinval - sinx);
        document.write(sinx.toFixed(0));
    }
 
    // Main function
 
     
        var n = 90;
        cal_sin(n);
 
 
// This code is contributed by todaysgaurav
 
</script>

Producción: 

1

Para función cos

Ejemplos:  

Input : 30
Output : 0.86602

{\displaystyle Cos(x)=\sum_{k=0}^{\infty } \frac {(-1)^k}{(2k)!}x^{2k}=1-\frac {x^2}{2!} + \frac {x^4}{4!} -.....}

C++

// CPP code for implementing cos function
#include <iostream>
#include <math.h>
using namespace std;
 
// Function for calculation
void cal_cos(float n)
{
    float accuracy = 0.0001, x1, denominator, cosx, cosval;
     
    // Converting degrees to radian
    n = n * (3.142 / 180.0);
     
    x1 = 1;
     
    // maps the sum along the series
    cosx = x1;        
     
    // holds the actual value of sin(n)
    cosval = cos(n);
    int i = 1;
    do
    {
        denominator = 2 * i * (2 * i - 1);
        x1 = -x1 * n * n / denominator;
        cosx = cosx + x1;
        i = i + 1;
    } while (accuracy <= fabs(cosval - cosx));
    cout << cosx;
}
 
// Main function
int main()
{
    float n = 30;
    cal_cos(n);
}

Java

// Java code for implementing cos function
 
import static java.lang.Math.cos;
 
class GFG {
// Function for calculation
 
static void cal_cos(float n) {
    float accuracy = (float) 0.0001, x1, denominator, cosx, cosval;
    // Converting degrees to radian
    n = n * (float) (3.142 / 180.0);
    x1 = 1;
    // maps the sum along the series
    cosx = x1;
    // holds the actual value of sin(n)
    cosval = (float) cos(n);
    int i = 1;
    do {
        denominator = 2 * i * (2 * i - 1);
        x1 = -x1 * n * n / denominator;
        cosx = cosx + x1;
        i = i + 1;
         
    }
    while (accuracy <= cosval - cosx);
    System.out.println(cosx);
     
}
 
// Main function
public static void main(String[] args) {
    float n = 30;
    cal_cos(n);
     
}
}

Python3

# Python 3 code for implementing cos function
 
from math import fabs, cos
 
# Function for calculation
def cal_cos(n):
    accuracy = 0.0001
 
    # Converting degrees to radian
    n = n * (3.142 / 180.0)
     
    x1 = 1
     
    # maps the sum along the series
    cosx = x1
     
    # holds the actual value of sin(n)
    cosval = cos(n)
    i = 1
 
    denominator = 2 * i * (2 * i - 1)
    x1 = -x1 * n * n / denominator
    cosx = cosx + x1
    i = i + 1
    while (accuracy <= fabs(cosval - cosx)):
        denominator = 2 * i * (2 * i - 1)
        x1 = -x1 * n * n / denominator
        cosx = cosx + x1
        i = i + 1
 
    print('{0:.6}'.format(cosx))
 
# Driver Code
if __name__ == '__main__':
    n = 30
    cal_cos(n)
 
# This code is contributed by
# Sahil_Shelangia

C#

// C# code for implementing cos function
 
using System;
class GFG {
// Function for calculation
 
static void cal_cos(float n) {
    float accuracy = (float) 0.0001, x1, denominator, cosx, cosval;
    // Converting degrees to radian
    n = n * (float) (3.142 / 180.0);
    x1 = 1;
    // maps the sum along the series
    cosx = x1;
    // holds the actual value of sin(n)
    cosval = (float) Math.Cos(n);
    int i = 1;
    do {
        denominator = 2 * i * (2 * i - 1);
        x1 = -x1 * n * n / denominator;
        cosx = cosx + x1;
        i = i + 1;
         
    }
    while (accuracy <= cosval - cosx);
    Console.WriteLine(cosx);
     
}
 
// Main function
static void Main() {
    float n = 30;
    cal_cos(n);
     
}
}
// This code is contributed by mits

PHP

<?php
// PHP code for implementing cos function
 
// Function for calculation
function cal_cos($n)
{
    $accuracy = 0.0001;
     
    // Converting degrees to radian
    $n = $n * (3.142 / 180.0);
     
    $x1 = 1;
     
    // maps the sum along the series
    $cosx = $x1;        
     
    // holds the actual value of sin(n)
    $cosval = cos($n);
    $i = 1;
    do
    {
        $denominator = 2 * $i * (2 * $i - 1);
        $x1 = -$x1 * $n * $n / $denominator;
        $cosx = $cosx + $x1;
        $i = $i + 1;
    } while ($accuracy <= abs($cosval - $cosx));
    echo round($cosx, 6);
}
 
// Driver Code
$n = 30;
cal_cos($n);
 
// This code is contributed by mits
?>

Javascript

<script>
 
// JavaScript code for implementing cos function
 
// Function for calculation
function cal_cos(n)
{
    let accuracy = 0.0001, x1, denominator, cosx, cosval;
     
    // Converting degrees to radian
    n = n * (3.142 / 180.0);
     
    x1 = 1;
     
    // maps the sum along the series
    cosx = x1;       
     
    // holds the actual value of sin(n)
    cosval = Math.cos(n);
    let i = 1;
    do
    {
        denominator = 2 * i * (2 * i - 1);
        x1 = -x1 * n * n / denominator;
        cosx = cosx + x1;
        i = i + 1;
    } while (accuracy <= Math.abs(cosval - cosx));
    document.write(cosx.toFixed(5));
}
 
// Main function
 
    let n = 30;
    cal_cos(n);
 
// This code is contributed by Surbhi Tyagi.
 
</script>

Producción: 

0.86602

Este artículo es una contribución de Sakshi Tiwari . Si te gusta GeeksforGeeks (¡sabemos que te gusta!) y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *