Los números fuertes son los números cuya suma de factorial de dígitos es igual al número original. Dado un número, compruebe si es un número fuerte o no.
Ejemplos:
Input : n = 145 Output : Yes Sum of digit factorials = 1! + 4! + 5! = 1 + 24 + 120 = 145 Input : n = 534 Output : No
1) Initialize sum of factorials as 0. 2) For every digit d, do following a) Add d! to sum of factorials. 3) If sum factorials is same as given number, return true. 4) Else return false.
Una optimización es precalcular factoriales de todos los números del 0 al 10.
C++
// C++ program to check if a number is // strong or not. #include <bits/stdc++.h> using namespace std; int f[10]; // Fills factorials of digits from 0 to 9. void preCompute() { f[0] = f[1] = 1; for (int i = 2; i<10; ++i) f[i] = f[i-1] * i; } // Returns true if x is Strong bool isStrong(int x) { int factSum = 0; // Traverse through all digits of x. int temp = x; while (temp) { factSum += f[temp%10]; temp /= 10; } return (factSum == x); } // Driver code int main() { preCompute(); int x = 145; isStrong(x) ? cout << "Yes\n" : cout << "No\n"; x = 534; isStrong(x) ? cout << "Yes\n" : cout << "No\n"; return 0; }
Java
// Java program to check if // a number is Strong or not class CheckStrong { static int f[] = new int[10]; // Fills factorials of digits from 0 to 9. static void preCompute() { f[0] = f[1] = 1; for (int i = 2; i<10; ++i) f[i] = f[i-1] * i; } // Returns true if x is Strong static boolean isStrong(int x) { int factSum = 0; // Traverse through all digits of x. int temp = x; while (temp>0) { factSum += f[temp%10]; temp /= 10; } return (factSum == x); } // main function public static void main (String[] args) { // calling preCompute preCompute(); // first pass int x = 145; if(isStrong(x)) { System.out.println("Yes"); } else System.out.println("No"); // second pass x = 534; if(isStrong(x)) { System.out.println("Yes"); } else System.out.println("No"); } }
Python3
# Python program to check if a number is # strong or not. f = [None] * 10 # Fills factorials of digits from 0 to 9. def preCompute() : f[0] = f[1] = 1; for i in range(2,10) : f[i] = f[i-1] * i # Returns true if x is Strong def isStrong(x) : factSum = 0 # Traverse through all digits of x. temp = x while (temp) : factSum = factSum + f[temp % 10] temp = temp // 10 return (factSum == x) # Driver code preCompute() x = 145 if(isStrong(x) ) : print ("Yes") else : print ("No") x = 534 if(isStrong(x)) : print ("Yes") else: print ("No") # This code is contributed by Nikita Tiwari.
C#
// C# program to check if // a number is Strong or not using System; class CheckStrong { static int []f = new int[10]; // Fills factorials of digits from 0 to 9. static void preCompute() { f[0] = f[1] = 1; for (int i = 2; i < 10; ++i) f[i] = f[i - 1] * i; } // Returns true if x is Strong static bool isStrong(int x) { int factSum = 0; // Traverse through all digits of x. int temp = x; while (temp > 0) { factSum += f[temp % 10]; temp /= 10; } return (factSum == x); } // Driver Code public static void Main () { // calling preCompute preCompute(); // first pass int x = 145; if(isStrong(x)) { Console.WriteLine("Yes"); } else Console.WriteLine("No"); // second pass x = 534; if(isStrong(x)) { Console.WriteLine("Yes"); } else Console.WriteLine("No"); } } // This code is contributed by Nitin Mittal.
PHP
<?php // PHP program to check if a number // is strong or not. $f[10] = array(); // Fills factorials of digits // from 0 to 9. function preCompute() { global $f; $f[0] = $f[1] = 1; for ($i = 2; $i < 10; ++$i) $f[$i] = $f[$i - 1] * $i; } // Returns true if x is Strong function isStrong($x) { global $f; $factSum = 0; // Traverse through all digits of x. $temp = $x; while ($temp) { $factSum += $f[$temp % 10]; $temp = (int)$temp / 10; } return ($factSum == $x); } // Driver code preCompute(); $x = 145; if(isStrong(!$x)) echo "Yes\n"; else echo "No\n"; $x = 534; if(isStrong($x)) echo "Yes\n"; else echo "No\n"; // This code is contributed by jit_t ?>
Javascript
<script> // Javascript program to check if a number is // strong or not. let f = new Array(10); // Fills factorials of digits from 0 to 9. function preCompute() { f[0] = f[1] = 1; for (let i = 2; i<10; ++i) f[i] = f[i-1] * i; } // Returns true if x is Strong function isStrong(x) { let factSum = 0; // Traverse through all digits of x. let temp = x; while (temp) { factSum += f[temp%10]; temp = Math.floor(temp/10); } return (factSum == x); } // Driver code preCompute(); let x = 145; isStrong(x) ? document.write("Yes" + "<br>") : document.write("No" + "<br>"); x = 534; isStrong(x) ? document.write("Yes" + "<br>") : document.write("No" + "<br>"); //This code is contributed by Mayank Tyagi </script>
Producción:
Yes No
Complejidad de tiempo: O (logn)
Espacio Auxiliar: O(n)
Este artículo es una contribución de Pramod Kumar . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA