Prerrequisito: eliminación de Gauss para resolver ecuaciones lineales
Introducción: el método de Gauss-Jordan, también conocido como método de eliminación de Gauss-Jordan, se utiliza para resolver un sistema de ecuaciones lineales y es una versión modificada del método de eliminación de Gauss .
Es similar y más simple que el Método de eliminación de Gauss, ya que tenemos que realizar 2 procesos diferentes en el Método de eliminación de Gauss, es decir,
1) Formación de la array triangular superior y
2) Sustitución hacia atrás.
Pero en el caso del Método de eliminación de Gauss-Jordan, solo tenemos que formar una forma escalonada de fila reducida (array diagonal). A continuación se muestra el diagrama de flujo del método de eliminación de Gauss-Jordan.
Diagrama de flujo del método de eliminación de Gauss-Jordan:
Ejemplos:
Input : 2y + z = 4 x + y + 2z = 6 2x + y + z = 7 Output : Final Augmented Matrix is : 1 0 0 2.2 0 2 0 2.8 0 0 -2.5 -3 Result is : 2.2 1.4 1.2
Explicación: A continuación se proporciona la explicación del ejemplo anterior.
- La array aumentada de entrada es:
- Intercambiando R1 y R2, obtenemos
- Realizando la operación de fila R3 <- R3 – (2*R1)
- Realizando las operaciones de fila R1 <- R1 – ((1/2)* R2) y R3 <- R3 + ((1/2)*R2)
- Ejecutando R1 <- R1 + ((3/5)*R3) y R2 <- R2 + ((2/5)*R3)
- Las Soluciones Únicas son:
C++
// C++ Implementation for Gauss-Jordan // Elimination Method #include <bits/stdc++.h> using namespace std; #define M 10 // Function to print the matrix void PrintMatrix(float a[][M], int n) { for (int i = 0; i < n; i++) { for (int j = 0; j <= n; j++) cout << a[i][j] << " "; cout << endl; } } // function to reduce matrix to reduced // row echelon form. int PerformOperation(float a[][M], int n) { int i, j, k = 0, c, flag = 0, m = 0; float pro = 0; // Performing elementary operations for (i = 0; i < n; i++) { if (a[i][i] == 0) { c = 1; while ((i + c) < n && a[i + c][i] == 0) c++; if ((i + c) == n) { flag = 1; break; } for (j = i, k = 0; k <= n; k++) swap(a[j][k], a[j+c][k]); } for (j = 0; j < n; j++) { // Excluding all i == j if (i != j) { // Converting Matrix to reduced row // echelon form(diagonal matrix) float pro = a[j][i] / a[i][i]; for (k = 0; k <= n; k++) a[j][k] = a[j][k] - (a[i][k]) * pro; } } } return flag; } // Function to print the desired result // if unique solutions exists, otherwise // prints no solution or infinite solutions // depending upon the input given. void PrintResult(float a[][M], int n, int flag) { cout << "Result is : "; if (flag == 2) cout << "Infinite Solutions Exists" << endl; else if (flag == 3) cout << "No Solution Exists" << endl; // Printing the solution by dividing constants by // their respective diagonal elements else { for (int i = 0; i < n; i++) cout << a[i][n] / a[i][i] << " "; } } // To check whether infinite solutions // exists or no solution exists int CheckConsistency(float a[][M], int n, int flag) { int i, j; float sum; // flag == 2 for infinite solution // flag == 3 for No solution flag = 3; for (i = 0; i < n; i++) { sum = 0; for (j = 0; j < n; j++) sum = sum + a[i][j]; if (sum == a[i][j]) flag = 2; } return flag; } // Driver code int main() { float a[M][M] = {{ 0, 2, 1, 4 }, { 1, 1, 2, 6 }, { 2, 1, 1, 7 }}; // Order of Matrix(n) int n = 3, flag = 0; // Performing Matrix transformation flag = PerformOperation(a, n); if (flag == 1) flag = CheckConsistency(a, n, flag); // Printing Final Matrix cout << "Final Augmented Matrix is : " << endl; PrintMatrix(a, n); cout << endl; // Printing Solutions(if exist) PrintResult(a, n, flag); return 0; }
Java
// Java Implementation for Gauss-Jordan // Elimination Method class GFG { static int M = 10; // Function to print the matrix static void PrintMatrix(float a[][], int n) { for (int i = 0; i < n; i++) { for (int j = 0; j <= n; j++) System.out.print(a[i][j] + " "); System.out.println(); } } // function to reduce matrix to reduced // row echelon form. static int PerformOperation(float a[][], int n) { int i, j, k = 0, c, flag = 0, m = 0; float pro = 0; // Performing elementary operations for (i = 0; i < n; i++) { if (a[i][i] == 0) { c = 1; while ((i + c) < n && a[i + c][i] == 0) c++; if ((i + c) == n) { flag = 1; break; } for (j = i, k = 0; k <= n; k++) { float temp =a[j][k]; a[j][k] = a[j+c][k]; a[j+c][k] = temp; } } for (j = 0; j < n; j++) { // Excluding all i == j if (i != j) { // Converting Matrix to reduced row // echelon form(diagonal matrix) float p = a[j][i] / a[i][i]; for (k = 0; k <= n; k++) a[j][k] = a[j][k] - (a[i][k]) * p; } } } return flag; } // Function to print the desired result // if unique solutions exists, otherwise // prints no solution or infinite solutions // depending upon the input given. static void PrintResult(float a[][], int n, int flag) { System.out.print("Result is : "); if (flag == 2) System.out.println("Infinite Solutions Exists"); else if (flag == 3) System.out.println("No Solution Exists"); // Printing the solution by dividing constants by // their respective diagonal elements else { for (int i = 0; i < n; i++) System.out.print(a[i][n] / a[i][i] +" "); } } // To check whether infinite solutions // exists or no solution exists static int CheckConsistency(float a[][], int n, int flag) { int i, j; float sum; // flag == 2 for infinite solution // flag == 3 for No solution flag = 3; for (i = 0; i < n; i++) { sum = 0; for (j = 0; j < n; j++) sum = sum + a[i][j]; if (sum == a[i][j]) flag = 2; } return flag; } // Driver code public static void main(String[] args) { float a[][] = {{ 0, 2, 1, 4 }, { 1, 1, 2, 6 }, { 2, 1, 1, 7 }}; // Order of Matrix(n) int n = 3, flag = 0; // Performing Matrix transformation flag = PerformOperation(a, n); if (flag == 1) flag = CheckConsistency(a, n, flag); // Printing Final Matrix System.out.println("Final Augmented Matrix is : "); PrintMatrix(a, n); System.out.println(""); // Printing Solutions(if exist) PrintResult(a, n, flag); } } /* This code contributed by PrinciRaj1992 */
C#
// C# Implementation for Gauss-Jordan // Elimination Method using System; using System.Collections.Generic; class GFG { static int M = 10; // Function to print the matrix static void PrintMatrix(float [,]a, int n) { for (int i = 0; i < n; i++) { for (int j = 0; j <= n; j++) Console.Write(a[i, j] + " "); Console.WriteLine(); } } // function to reduce matrix to reduced // row echelon form. static int PerformOperation(float [,]a, int n) { int i, j, k = 0, c, flag = 0; // Performing elementary operations for (i = 0; i < n; i++) { if (a[i, i] == 0) { c = 1; while ((i + c) < n && a[i + c, i] == 0) c++; if ((i + c) == n) { flag = 1; break; } for (j = i, k = 0; k <= n; k++) { float temp = a[j, k]; a[j, k] = a[j + c, k]; a[j + c, k] = temp; } } for (j = 0; j < n; j++) { // Excluding all i == j if (i != j) { // Converting Matrix to reduced row // echelon form(diagonal matrix) float p = a[j, i] / a[i, i]; for (k = 0; k <= n; k++) a[j, k] = a[j, k] - (a[i, k]) * p; } } } return flag; } // Function to print the desired result // if unique solutions exists, otherwise // prints no solution or infinite solutions // depending upon the input given. static void PrintResult(float [,]a, int n, int flag) { Console.Write("Result is : "); if (flag == 2) Console.WriteLine("Infinite Solutions Exists"); else if (flag == 3) Console.WriteLine("No Solution Exists"); // Printing the solution by dividing // constants by their respective // diagonal elements else { for (int i = 0; i < n; i++) Console.Write(a[i, n] / a[i, i] + " "); } } // To check whether infinite solutions // exists or no solution exists static int CheckConsistency(float [,]a, int n, int flag) { int i, j; float sum; // flag == 2 for infinite solution // flag == 3 for No solution flag = 3; for (i = 0; i < n; i++) { sum = 0; for (j = 0; j < n; j++) sum = sum + a[i, j]; if (sum == a[i, j]) flag = 2; } return flag; } // Driver code public static void Main(String[] args) { float [,]a = {{ 0, 2, 1, 4 }, { 1, 1, 2, 6 }, { 2, 1, 1, 7 }}; // Order of Matrix(n) int n = 3, flag = 0; // Performing Matrix transformation flag = PerformOperation(a, n); if (flag == 1) flag = CheckConsistency(a, n, flag); // Printing Final Matrix Console.WriteLine("Final Augmented Matrix is : "); PrintMatrix(a, n); Console.WriteLine(""); // Printing Solutions(if exist) PrintResult(a, n, flag); } } // This code is contributed by 29AjayKumar
Javascript
<script> // JavaScript Implementation for Gauss-Jordan // Elimination Method let M = 10; // Function to print the matrix function PrintMatrix(a,n) { for (let i = 0; i < n; i++) { for (let j = 0; j <= n; j++) document.write(a[i][j] + " "); document.write("<br>"); } } // function to reduce matrix to reduced // row echelon form. function PerformOperation(a,n) { let i, j, k = 0, c, flag = 0, m = 0; let pro = 0; // Performing elementary operations for (i = 0; i < n; i++) { if (a[i][i] == 0) { c = 1; while ((i + c) < n && a[i + c][i] == 0) c++; if ((i + c) == n) { flag = 1; break; } for (j = i, k = 0; k <= n; k++) { let temp =a[j][k]; a[j][k] = a[j+c][k]; a[j+c][k] = temp; } } for (j = 0; j < n; j++) { // Excluding all i == j if (i != j) { // Converting Matrix to reduced row // echelon form(diagonal matrix) let p = a[j][i] / a[i][i]; for (k = 0; k <= n; k++) a[j][k] = a[j][k] - (a[i][k]) * p; } } } return flag; } // Function to print the desired result // if unique solutions exists, otherwise // prints no solution or infinite solutions // depending upon the input given. function PrintResult(a,n,flag) { document.write("Result is : "); if (flag == 2) document.write("Infinite Solutions Exists<br>"); else if (flag == 3) document.write("No Solution Exists<br>"); // Printing the solution by dividing constants by // their respective diagonal elements else { for (let i = 0; i < n; i++) document.write(a[i][n] / a[i][i] +" "); } } // To check whether infinite solutions // exists or no solution exists function CheckConsistency(a,n,flag) { let i, j; let sum; // flag == 2 for infinite solution // flag == 3 for No solution flag = 3; for (i = 0; i < n; i++) { sum = 0; for (j = 0; j < n; j++) sum = sum + a[i][j]; if (sum == a[i][j]) flag = 2; } return flag; } // Driver code let a=[[ 0, 2, 1, 4 ], [ 1, 1, 2, 6 ], [ 2, 1, 1, 7 ]]; // Order of Matrix(n) let n = 3, flag = 0; // Performing Matrix transformation flag = PerformOperation(a, n); if (flag == 1) flag = CheckConsistency(a, n, flag); // Printing Final Matrix document.write("Final Augmented Matrix is : <br>"); PrintMatrix(a, n); document.write("<br>"); // Printing Solutions(if exist) PrintResult(a, n, flag); // This code is contributed by rag2127 </script>
Final Augmented Matrix is : 1 0 0 2.2 0 2 0 2.8 0 0 -2.5 -3 Result is : 2.2 1.4 1.2
Aplicaciones:
- Sistema de resolución de ecuaciones lineales: el método de eliminación de Gauss-Jordan se puede utilizar para encontrar la solución de un sistema de ecuaciones lineales que se aplica en las matemáticas.
- Determinación del determinante: la eliminación gaussiana se puede aplicar a una array cuadrada para encontrar el determinante de la array.
- Encontrar el inverso de la array: el método de eliminación de Gauss-Jordan se puede utilizar para determinar el inverso de una array cuadrada.
- Búsqueda de rangos y bases: utilizando la forma escalonada de fila reducida, los rangos y las bases de las arrays cuadradas se pueden calcular mediante el método de eliminación de Gauss.
Publicación traducida automáticamente
Artículo escrito por Ankit_Bisht y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA