Dada una ecuación cuadrática en la forma ax 2 + bx + c , encuentre sus raíces .
C
/* C program to find roots of a quadratic equation */ #include <math.h> #include <stdio.h> #include <stdlib.h> // Prints roots of quadratic equation ax*2 + bx + x void findRoots(int a, int b, int c) { // If a is 0, then equation is not quadratic, but // linear if (a == 0) { printf("Invalid"); return; } int d = b * b - 4 * a * c; double sqrt_val = sqrt(abs(d)); if (d > 0) { printf("Roots are real and different \n"); printf("%f\n%f", (double)(-b + sqrt_val) / (2 * a), (double)(-b - sqrt_val) / (2 * a)); } else if (d == 0) { printf("Roots are real and same \n"); printf("%f", -(double)b / (2 * a)); } else // d < 0 { printf("Roots are complex \n"); printf("%f + i%f\n%f - i%f", -(double)b / (2 * a), sqrt_val/(2 * a), -(double)b / (2 * a), sqrt_val/(2 * a)); } } // Driver code int main() { int a = 1, b = -7, c = 12; // Function call findRoots(a, b, c); return 0; }
C++
/* C++ program to find roots of a quadratic equation */ #include <bits/stdc++.h> using namespace std; // Prints roots of quadratic equation ax*2 + bx + x void findRoots(int a, int b, int c) { // If a is 0, then equation is not quadratic, but // linear if (a == 0) { cout << "Invalid"; return; } int d = b * b - 4 * a * c; double sqrt_val = sqrt(abs(d)); if (d > 0) { cout << "Roots are real and different \n"; cout << (double)(-b + sqrt_val) / (2 * a) << "\n" << (double)(-b - sqrt_val) / (2 * a); } else if (d == 0) { cout << "Roots are real and same \n"; cout << -(double)b / (2 * a); } else // d < 0 { cout << "Roots are complex \n"; cout << -(double)b / (2 * a) << " + i" << sqrt_val / (2 * a) << "\n" << -(double)b / (2 * a) << " - i" << sqrt_val / (2 * a) ; } } // Driver code int main() { int a = 1, b = -7, c = 12; // Function call findRoots(a, b, c); return 0; }
Java
// Java program to find roots // of a quadratic equation import java.io.*; import static java.lang.Math.*; class Quadratic { // Prints roots of quadratic // equation ax * 2 + bx + x static void findRoots(int a, int b, int c) { // If a is 0, then equation is not // quadratic, but linear if (a == 0) { System.out.println("Invalid"); return; } int d = b * b - 4 * a * c; double sqrt_val = sqrt(abs(d)); if (d > 0) { System.out.println( "Roots are real and different \n"); System.out.println( (double)(-b + sqrt_val) / (2 * a) + "\n" + (double)(-b - sqrt_val) / (2 * a)); } else if (d == 0) { System.out.println( "Roots are real and same \n"); System.out.println(-(double)b / (2 * a) + "\n" + -(double)b / (2 * a)); } else // d < 0 { System.out.println("Roots are complex \n"); System.out.println(-(double)b / (2 * a) + " + i" + sqrt_val / (2 * a) + "\n" + -(double)b / (2 * a) + " - i" + sqrt_val / (2 * a)) ; } } // Driver code public static void main(String args[]) { int a = 1, b = -7, c = 12; // Function call findRoots(a, b, c); } } // This code is contributed by Sumit Kumar.
Python3
# Python program to find roots # of a quadratic equation import math # Prints roots of quadratic equation # ax*2 + bx + x def findRoots(a, b, c): # If a is 0, then equation is # not quadratic, but linear if a == 0: print("Invalid") return -1 d = b * b - 4 * a * c sqrt_val = math.sqrt(abs(d)) if d > 0: print("Roots are real and different ") print((-b + sqrt_val)/(2 * a)) print((-b - sqrt_val)/(2 * a)) elif d == 0: print("Roots are real and same") print(-b / (2*a)) else: # d<0 print("Roots are complex") print(- b / (2*a), " + i", sqrt_val/ (2 * a)) print(- b / (2*a), " - i", sqrt_val/ (2 * a)) # Driver Program a = 1 b = -7 c = 12 # Function call findRoots(a, b, c) # This code is contributed by Sharad Bhardwaj.
C#
// C# program to find roots // of a quadratic equation using System; class Quadratic { // Prints roots of quadratic // equation ax * 2 + bx + x void findRoots(int a, int b, int c) { // If a is 0, then equation is // not quadratic, but linear if (a == 0) { Console.Write("Invalid"); return; } int d = b * b - 4 * a * c; double sqrt_val = Math.Abs(d); if (d > 0) { Console.Write( "Roots are real and different \n"); Console.Write( (double)(-b + sqrt_val) / (2 * a) + "\n" + (double)(-b - sqrt_val) / (2 * a)); } // d < 0 else { Console.Write("Roots are complex \n"); Console.Write(-(double)b / (2 * a) + " + i" + sqrt_val / (2 * a) + "\n" + -(double)b / (2 * a) + " - i" + sqrt_val / (2 * a) ); } } // Driver code public static void Main() { Quadratic obj = new Quadratic(); int a = 1, b = -7, c = 12; // Function call obj.findRoots(a, b, c); } } // This code is contributed by nitin mittal.
PHP
<?php // PHP program to find roots // of a quadratic equation // Prints roots of quadratic // equation ax*2 + bx + x function findRoots($a, $b, $c) { // If a is 0, then equation is // not quadratic, but linear if ($a == 0) { echo "Invalid"; return; } $d = $b * $b - 4 * $a * $c; $sqrt_val = sqrt(abs($d)); if ($d > 0) { echo "Roots are real and ". "different \n"; echo (-$b + $sqrt_val) / (2 * $a) , "\n", (-$b - $sqrt_val) / (2 * $a); } else if ($d == 0) { echo "Roots are real and same \n"; echo -$b / (2 * $a); } // d < 0 else { echo "Roots are complex \n"; echo -$b / (2 * $a) , " + i" , $sqrt_val / (2 * $a) , "\n" , -$b / (2 * $a), " - i", $sqrt_val / (2 * $a) ; } } // Driver code $a = 1; $b = -7 ;$c = 12; // Function call findRoots($a, $b, $c); // This code is contributed // by nitin mittal. ?>
Javascript
<script> // JavaScript program to find roots // of a quadratic equation // Prints roots of quadratic // equation ax * 2 + bx + x function findRoots(a, b, c) { // If a is 0, then equation is not // quadratic, but linear if (a == 0) { document.write("Invalid"); return; } let d = b * b - 4 * a * c; let sqrt_val = Math.sqrt(Math.abs(d)); if (d > 0) { document.write( "Roots are real and different \n" + "<br/>"); document.write( (-b + sqrt_val) / (2 * a) + "<br/>" + (-b - sqrt_val) / (2 * a)); } else if (d == 0) { document.write( "Roots are real and same \n" + "<br/>"); document.write(-b / (2 * a) + "<br/>" + -b / (2 * a)) ; } else // d < 0 { document.write("Roots are complex \n"); document.write(-b / (2 * a) + " + i" + sqrt_val / (2 * a) + "<br/>" + -b / (2 * a) + " - i" + sqrt_val) / (2 * a) ; } } // Driver Code let a = 1, b = -7, c = 12; // Function call findRoots(a, b, c); </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA