Dado el valor de n. Tienes que encontrar la suma de la serie donde el término n de la secuencia está dado por:
T n = n 2 – ( n – 1 ) 2
Ejemplos :
Input : 3 Output : 9 Explanation: So here the term of the sequence upto n = 3 are: 1, 3, 5 And hence the required sum is = 1 + 3 + 5 = 9 Input : 6 Output : 36
Enfoque simple
Simplemente use un ciclo y calcule la suma de cada término e imprima la suma.
C++
// CPP program to find summation of series #include <bits/stdc++.h> using namespace std; int summingSeries(long n) { // use of loop to calculate // sum of each term int S = 0; for (int i = 1; i <= n; i++) S += i * i - (i - 1) * (i - 1); return S; } // Driver Code int main() { int n = 100; cout << "The sum of n term is: " << summingSeries(n) << endl; return 0; }
Java
// JAVA program to find summation of series import java.io.*; import java.math.*; import java.text.*; import java.util.*; import java.util.regex.*; class GFG { // function to calculate sum of series static int summingSeries(long n) { // use of loop to calculate // sum of each term int S = 0; for (i = 1; i <= n; i++) S += i * i - (i - 1) * (i - 1); return S; } // Driver code public static void main(String[] args) { int n = 100; System.out.println("The sum of n term is: " + summingSeries(n)); } }
Python3
# Python3 program to find summation # of series def summingSeries(n): # use of loop to calculate # sum of each term S = 0 for i in range(1, n+1): S += i * i - (i - 1) * (i - 1) return S # Driver Code n = 100 print("The sum of n term is: ", summingSeries(n), sep = "") # This code is contributed by Smitha.
C#
// C# program to illustrate... // Summation of series using System; class GFG { // function to calculate sum of series static int summingSeries(long n) { // Using the pow function calculate // the sum of the series return (int)Math.Pow(n, 2); } // Driver code public static void Main(String[] args) { int n = 100; Console.Write("The sum of n term is: " + summingSeries(n)); } } // This code contribute by Parashar...
PHP
<?php // PHP program to find // summation of series function summingSeries( $n) { // use of loop to calculate // sum of each term $S = 0; for ($i = 1; $i <= $n; $i++) $S += $i * $i - ($i - 1) * ($i - 1); return $S; } // Driver Code $n = 100; echo "The sum of n term is: ", summingSeries($n) ; // This code contribute by vt_m. ?>
Javascript
<script> // Javascript program to find summation of series function summingSeries(n) { // use of loop to calculate // sum of each term let S = 0; for (let i = 1; i <= n; i++) S += i * i - (i - 1) * (i - 1); return S; } // Driver Code let n = 100; document.write("The sum of n term is: " + summingSeries(n)); // This code is contributed by rishavmahato348. </script>
Producción:
The sum of n term is: 10000
Complejidad de tiempo – O(N)
Complejidad de espacio – O(1)
Enfoque eficiente
El uso del enfoque matemático puede resolver este problema de manera más eficiente.
T n = n 2 – (n-1) 2
La suma de la serie viene dada por (S) = SUM( T n )
TOMEMOS UN EJEMPLO SI
N = 4
Significa que debe haber 4 términos en la serie por lo que
1 er término = 1 2 – ( 1 – 1 ) 2
2 do término = 2 2 – ( 2 – 1 ) 2
3 o término = 3 2 – ( 3 – 1 ) 2
4 o término = 4 2 – ( 3 – 1 ) 2
ASÍ QUE LA SUMA ESTÁ DADA POR = (1 – 0) + (4 – 1) + (9 – 4) + (16 – 9)
= 16
DE ESTO TENEMOS AVISO DE QUE 1, 4, 9 SE CANCELAN DE LA SERIE
SOLO QUEDA 16 QUE ES IGUAL AL CUADRADO DE N
Entonces, de la serie anterior notamos que cada término se cancela del siguiente término, solo el último término es izquierda que es igual a N 2 .
C++
// CPP program to illustrate... // Summation of series #include <bits/stdc++.h> using namespace std; int summingSeries(long n) { // Sum of n terms is n^2 return pow(n, 2); } // Driver Code int main() { int n = 100; cout << "The sum of n term is: " << summingSeries(n) << endl; return 0; }
Java
// JAVA program to illustrate... // Summation of series import java.io.*; import java.math.*; import java.text.*; import java.util.*; import java.util.regex.*; class GFG { // function to calculate sum of series static int summingSeries(long n) { // Using the pow function calculate // the sum of the series return (int)Math.pow(n, 2); } // Driver code public static void main(String[] args) { int n = 100; System.out.println("The sum of n term is: " + summingSeries(n)); } }
Python3
# Python3 program to illustrate... # Summation of series import math def summingSeries(n): # Sum of n terms is n^2 return math.pow(n, 2) # Driver Code n = 100 print ("The sum of n term is: ", summingSeries(n)) # This code is contributed by mits.
C#
// C# program to illustrate... // Summation of series using System; class GFG { // function to calculate sum of series static int summingSeries(long n) { // Using the pow function calculate // the sum of the series return (int)Math.Pow(n, 2); } // Driver code public static void Main() { int n = 100; Console.Write("The sum of n term is: " + summingSeries(n)); } } // This code is contributed by nitin mittal.
PHP
<?php // PHP program to illustrate... // Summation of series function summingSeries($n) { // Sum of n terms is n^2 return pow($n, 2); } // Driver Code $n = 100; echo "The sum of n term is: ", summingSeries($n); // This code contribute by vt_m. ?>
Javascript
<script> // Javascript program to illustrate... // Summation of series function summingSeries(n) { // Sum of n terms is n^2 return Math.pow(n, 2); } // Driver Code let n = 100; document.write("The sum of n term is: " + summingSeries(n) + "<br>"); // This code is contributed by subham348. </script>
Producción:
The sum of n term is: 10000
Complejidad temporal – O(1)
Complejidad espacial – O(1)
Publicación traducida automáticamente
Artículo escrito por Kanishk_Verma y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA