Dado un número N, la tarea es imprimir los números primos del 1 al N.
Ejemplos:
Input: N = 10 Output: 2, 3, 5, 7 Input: N = 5 Output: 2, 3, 5
Algoritmo:
C++
// C++ program to display Prime numbers till N #include <bits/stdc++.h> using namespace std; // function to check if a given number is prime bool isPrime(int n) { // since 0 and 1 is not prime return false. if (n == 1 || n == 0) return false; // Run a loop from 2 to n-1 for (int i = 2; i < n; i++) { // if the number is divisible by i, then n is not a // prime number. if (n % i == 0) return false; } // otherwise, n is prime number. return true; } // Driver code int main() { int N = 100; // check for every number from 1 to N for (int i = 1; i <= N; i++) { // check if current number is prime if (isPrime(i)) cout << i << " "; } return 0; }
C
// C program to display Prime numbers till N #include <stdbool.h> #include <stdio.h> // function to check if a given number is prime bool isPrime(int n) { // since 0 and 1 is not prime return false. if (n == 1 || n == 0) return false; // Run a loop from 2 to n-1 for (int i = 2; i < n; i++) { // if the number is divisible by i, then n is not a // prime number. if (n % i == 0) return false; } // otherwise, n is prime number. return true; } // Driver code int main() { int N = 100; // check for every number from 1 to N for (int i = 1; i <= N; i++) { // check if current number is prime if (isPrime(i)) printf("%d ", i); } return 0; } // This code is contributed by Sania Kumari Gupta
Java
// Java program to display Prime numbers till N class GFG { //function to check if a given number is prime static boolean isPrime(int n){ //since 0 and 1 is not prime return false. if(n==1||n==0)return false; //Run a loop from 2 to n-1 for(int i=2; i<n; i++){ // if the number is divisible by i, then n is not a prime number. if(n%i==0)return false; } //otherwise, n is prime number. return true; } // Driver code public static void main (String[] args) { int N = 100; //check for every number from 1 to N for(int i=1; i<=N; i++){ //check if current number is prime if(isPrime(i)) { System.out.print(i + " "); } } } }
Python3
# Python3 program to display Prime numbers till N #function to check if a given number is prime def isPrime(n): #since 0 and 1 is not prime return false. if(n==1 or n==0): return False #Run a loop from 2 to n-1 for i in range(2,n): #if the number is divisible by i, then n is not a prime number. if(n%i==0): return False #otherwise, n is prime number. return True # Driver code N = 100; #check for every number from 1 to N for i in range(1,N+1): #check if current number is prime if(isPrime(i)): print(i,end=" ")
C#
// C# program to display Prime numbers till N using System; class GFG { //function to check if a given number is prime static bool isPrime(int n){ //since 0 and 1 is not prime return false. if(n==1||n==0) return false; //Run a loop from 2 to n-1 for(int i=2; i<n; i++) { // if the number is divisible by i, then n is not a prime number. if(n%i==0) return false; } //otherwise, n is prime number. return true; } // Driver code public static void Main (String[] args) { int N = 100; //check for every number from 1 to N for(int i=1; i<=N; i++) { //check if current number is prime if(isPrime(i)) { Console.Write(i + " "); } } } } // This code is contributed by Rajput-Ji
Javascript
<script> // JavaScript program to display Prime numbers till N // function to check if a given number is prime function isPrime( n) { // since 0 and 1 is not prime return false. if(n == 1 || n == 0) return false; // Run a loop from 2 to n-1 for(var i = 2; i < n; i++) { // if the number is divisible by i, then n is not a prime number. if(n % i == 0) return false; } // otherwise, n is prime number. return true; } // Driver code var N = 100; // check for every number from 1 to N for(var i = 1; i <= N; i++) { // check if current number is prime if(isPrime(i)) { console.log( i ); } } // This code is contributed by ukasp. </script>
C++
// C++ program to display Prime numbers till N #include <bits/stdc++.h> using namespace std; //function to check if a given number is prime bool isPrime(int n){ //since 0 and 1 is not prime return false. if(n==1||n==0) return false; //Run a loop from 2 to n/2. for(int i=2; i<=n/2; i++) { // if the number is divisible by i, then n is not a prime number. if(n%i==0) return false; } //otherwise, n is prime number. return true; } // Driver code int main() { int N = 100; //check for every number from 1 to N for(int i=1; i<=N; i++){ //check if current number is prime if(isPrime(i)) { cout << i << " "; } } return 0; }
Java
// Java program to display // Prime numbers till N class GFG { //function to check if a given number is prime static boolean isPrime(int n){ //since 0 and 1 is not prime return false. if(n==1||n==0) return false; //Run a loop from 2 to n-1 for(int i=2; i<=n/2; i++){ // if the number is divisible by i, then n is not a prime number. if(n%i==0)return false; } //otherwise, n is prime number. return true; } // Driver code public static void main (String[] args) { int N = 100; //check for every number from 1 to N for(int i=1; i<=N; i++){ //check if current number is prime if(isPrime(i)) { System.out.print(i + " "); } } } }
Python3
# Python3 program to display Prime numbers till N #function to check if a given number is prime def isPrime(n): #since 0 and 1 is not prime return false. if(n==1 or n==0): return False #Run a loop from 2 to n/2 for i in range(2,(n//2)+1): #if the number is divisible by i, then n is not a prime number. if(n%i==0): return False #otherwise, n is prime number. return True # Driver code N = 100; #check for every number from 1 to N for i in range(1,N+1): #check if current number is prime if(isPrime(i)): print(i,end=" ")
C#
// C# program to display // Prime numbers till N using System; class GFG { //function to check if a given number is prime static bool isPrime(int n){ //since 0 and 1 is not prime return false. if(n==1||n==0)return false; //Run a loop from 2 to n/2. for(int i=2; i<=n/2; i++){ // if the number is divisible by i, then n is not a prime number. if(n%i==0)return false; } //otherwise, n is prime number. return true; } // Driver code public static void Main (String[] args) { int N = 100; //check for every number from 1 to N for(int i=1; i<=N; i++){ //check if current number is prime if(isPrime(i)) { Console.Write(i + " "); } } } } // This code is contributed by Rajput-Ji
Javascript
<script> // Javascript program to display Prime numbers till N // function to check if a given number is prime function isPrime(n) { // since 0 and 1 is not prime return false. if(n == 1 || n == 0) return false; // Run a loop from 2 to n/2. for(let i = 2; i <= n / 2; i++) { // if the number is divisible by i, then n is not a prime number. if(n % i == 0) return false; } // otherwise, n is prime number. return true; } // Driver code let N = 100; // check for every number from 1 to N for(let i = 1; i <= N; i++) { // check if current number is prime if(isPrime(i)) { document.write(i + " "); } } // This code is contributed by shubham348. </script>
C++
// C++ program to display Prime numbers till N #include <bits/stdc++.h> using namespace std; //function to check if a given number is prime bool isPrime(int n){ //since 0 and 1 is not prime return false. if(n==1||n==0)return false; //Run a loop from 2 to square root of n. for(int i=2; i*i<=n; i++){ // if the number is divisible by i, then n is not a prime number. if(n%i==0)return false; } //otherwise, n is prime number. return true; } // Driver code int main() { int N = 100; //check for every number from 1 to N for(int i=1; i<=N; i++){ //check if current number is prime if(isPrime(i)) { cout << i << " "; } } return 0; }
Java
// Java program to display // Prime numbers till N class GFG { //function to check if a given number is prime static boolean isPrime(int n){ //since 0 and 1 is not prime return false. if(n==1||n==0)return false; //Run a loop from 2 to square root of n for(int i=2; i*i<=n; i++){ // if the number is divisible by i, then n is not a prime number. if(n%i==0)return false; } //otherwise, n is prime number. return true; } // Driver code public static void main (String[] args) { int N = 100; //check for every number from 1 to N for(int i=1; i<=N; i++){ //check if current number is prime if(isPrime(i)) { System.out.print(i + " "); } } } }
Python3
# Python3 program to display Prime numbers till N #function to check if a given number is prime def isPrime(n): #since 0 and 1 is not prime return false. if(n==1 or n==0): return False #Run a loop from 2 to square root of n. for i in range(2,int(n**(1/2))+1): #if the number is divisible by i, then n is not a prime number. if(n%i==0): return False #otherwise, n is prime number. return True # Driver code N = 100; #check for every number from 1 to N for i in range(1,N+1): #check if current number is prime if(isPrime(i)): print(i,end=" ")
C#
// C# program to display // Prime numbers till N using System; class GFG { //function to check if a given number is prime static bool isPrime(int n){ //since 0 and 1 is not prime return false. if(n==1||n==0)return false; //Run a loop from 2 to square root of n. for(int i=2; i*i<=n; i++){ // if the number is divisible by i, then n is not a prime number. if(n%i==0)return false; } //otherwise, n is prime number. return true; } // Driver code public static void Main (String[] args) { int N = 100; //check for every number from 1 to N for(int i=1; i<=N; i++){ //check if current number is prime if(isPrime(i)) { Console.Write(i + " "); } } } } // This code is contributed by Rajput-Ji
Javascript
<script> // JavaScript program to display Prime numbers till N // function to check if a given number is prime const isPrime = (n) => { // since 0 and 1 is not prime return false. if(n === 1||n === 0)return false; // Run a loop from 2 to square root of n. for(let i = 2; i <= Math.floor(Math.sqrt(n)); i++) { // if the number is divisible by i, then n is not a prime number. if(n % i == 0)return false; } // otherwise, n is prime number. return true; } // Driver code let N = 100; // check for every number from 1 to N for(let i=1; i<=N; i++) { // check if current number is prime if(isPrime(i)) { document.write(i); } } // This code is contributed by shinjanpatra </script>