Dado un número n, comprueba si es primo o no. Hemos presentado y discutido los métodos School y Fermat para las pruebas de primalidad.
Prueba de primalidad | Serie 1 (Introducción y Método Escolar)
Prueba de Primalidad | Conjunto 2 (Método Fermat)
En esta publicación, se analiza el método Miller-Rabin. Este método es un método probabilístico (como Fermat), pero generalmente se prefiere al método de Fermat.
Algoritmo:
// It returns false if n is composite and returns true if n // is probably prime. k is an input parameter that determines // accuracy level. Higher value of k indicates more accuracy. bool isPrime(int n, int k) 1) Handle base cases for n < 3 2) If n is even, return false. 3) Find an odd number d such that n-1 can be written as d*2r. Note that since n is odd, (n-1) must be even and r must be greater than 0. 4) Do following k times if (millerTest(n, d) == false) return false 5) Return true. // This function is called for all k trials. It returns // false if n is composite and returns true if n is probably // prime. // d is an odd number such that d*2r = n-1 for some r>=1 bool millerTest(int n, int d) 1) Pick a random number 'a' in range [2, n-2] 2) Compute: x = pow(a, d) % n 3) If x == 1 or x == n-1, return true. // Below loop mainly runs 'r-1' times. 4) Do following while d doesn't become n-1. a) x = (x*x) % n. b) If (x == 1) return false. c) If (x == n-1) return true.
Ejemplo:
Input: n = 13, k = 2. 1) Compute d and r such that d*2r = n-1, d = 3, r = 2. 2) Call millerTest k times. 1st Iteration: 1) Pick a random number 'a' in range [2, n-2] Suppose a = 4 2) Compute: x = pow(a, d) % n x = 43 % 13 = 12 3) Since x = (n-1), return true. IInd Iteration: 1) Pick a random number 'a' in range [2, n-2] Suppose a = 5 2) Compute: x = pow(a, d) % n x = 53 % 13 = 8 3) x neither 1 nor 12. 4) Do following (r-1) = 1 times a) x = (x * x) % 13 = (8 * 8) % 13 = 12 b) Since x = (n-1), return true. Since both iterations return true, we return true.
Implementación:
A continuación se muestra la implementación del algoritmo anterior.
C++
// C++ program Miller-Rabin primality test #include <bits/stdc++.h> using namespace std; // Utility function to do modular exponentiation. // It returns (x^y) % p int power(int x, unsigned int y, int p) { int res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p while (y > 0) { // If y is odd, multiply x with result if (y & 1) res = (res*x) % p; // y must be even now y = y>>1; // y = y/2 x = (x*x) % p; } return res; } // This function is called for all k trials. It returns // false if n is composite and returns true if n is // probably prime. // d is an odd number such that d*2<sup>r</sup> = n-1 // for some r >= 1 bool miillerTest(int d, int n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 int a = 2 + rand() % (n - 4); // Compute a^d % n int x = power(a, d, n); if (x == 1 || x == n-1) return true; // Keep squaring x while one of the following doesn't // happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n-1) { x = (x * x) % n; d *= 2; if (x == 1) return false; if (x == n-1) return true; } // Return composite return false; } // It returns false if n is composite and returns true if n // is probably prime. k is an input parameter that determines // accuracy level. Higher value of k indicates more accuracy. bool isPrime(int n, int k) { // Corner cases if (n <= 1 || n == 4) return false; if (n <= 3) return true; // Find r such that n = 2^d * r + 1 for some r >= 1 int d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for (int i = 0; i < k; i++) if (!miillerTest(d, n)) return false; return true; } // Driver program int main() { int k = 4; // Number of iterations cout << "All primes smaller than 100: \n"; for (int n = 1; n < 100; n++) if (isPrime(n, k)) cout << n << " "; return 0; }
Java
// Java program Miller-Rabin primality test import java.io.*; import java.math.*; class GFG { // Utility function to do modular // exponentiation. It returns (x^y) % p static int power(int x, int y, int p) { int res = 1; // Initialize result //Update x if it is more than or // equal to p x = x % p; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) == 1) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // This function is called for all k trials. // It returns false if n is composite and // returns false if n is probably prime. // d is an odd number such that d*2<sup>r</sup> // = n-1 for some r >= 1 static boolean miillerTest(int d, int n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 int a = 2 + (int)(Math.random() % (n - 4)); // Compute a^d % n int x = power(a, d, n); if (x == 1 || x == n - 1) return true; // Keep squaring x while one of the // following doesn't happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n - 1) { x = (x * x) % n; d *= 2; if (x == 1) return false; if (x == n - 1) return true; } // Return composite return false; } // It returns false if n is composite // and returns true if n is probably // prime. k is an input parameter that // determines accuracy level. Higher // value of k indicates more accuracy. static boolean isPrime(int n, int k) { // Corner cases if (n <= 1 || n == 4) return false; if (n <= 3) return true; // Find r such that n = 2^d * r + 1 // for some r >= 1 int d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for (int i = 0; i < k; i++) if (!miillerTest(d, n)) return false; return true; } // Driver program public static void main(String args[]) { int k = 4; // Number of iterations System.out.println("All primes smaller " + "than 100: "); for (int n = 1; n < 100; n++) if (isPrime(n, k)) System.out.print(n + " "); } } /* This code is contributed by Nikita Tiwari.*/
Python3
# Python3 program Miller-Rabin primality test import random # Utility function to do # modular exponentiation. # It returns (x^y) % p def power(x, y, p): # Initialize result res = 1; # Update x if it is more than or # equal to p x = x % p; while (y > 0): # If y is odd, multiply # x with result if (y & 1): res = (res * x) % p; # y must be even now y = y>>1; # y = y/2 x = (x * x) % p; return res; # This function is called # for all k trials. It returns # false if n is composite and # returns false if n is # probably prime. d is an odd # number such that d*2<sup>r</sup> = n-1 # for some r >= 1 def miillerTest(d, n): # Pick a random number in [2..n-2] # Corner cases make sure that n > 4 a = 2 + random.randint(1, n - 4); # Compute a^d % n x = power(a, d, n); if (x == 1 or x == n - 1): return True; # Keep squaring x while one # of the following doesn't # happen # (i) d does not reach n-1 # (ii) (x^2) % n is not 1 # (iii) (x^2) % n is not n-1 while (d != n - 1): x = (x * x) % n; d *= 2; if (x == 1): return False; if (x == n - 1): return True; # Return composite return False; # It returns false if n is # composite and returns true if n # is probably prime. k is an # input parameter that determines # accuracy level. Higher value of # k indicates more accuracy. def isPrime( n, k): # Corner cases if (n <= 1 or n == 4): return False; if (n <= 3): return True; # Find r such that n = # 2^d * r + 1 for some r >= 1 d = n - 1; while (d % 2 == 0): d //= 2; # Iterate given number of 'k' times for i in range(k): if (miillerTest(d, n) == False): return False; return True; # Driver Code # Number of iterations k = 4; print("All primes smaller than 100: "); for n in range(1,100): if (isPrime(n, k)): print(n , end=" "); # This code is contributed by mits
C#
// C# program Miller-Rabin primality test using System; class GFG { // Utility function to do modular // exponentiation. It returns (x^y) % p static int power(int x, int y, int p) { int res = 1; // Initialize result // Update x if it is more than // or equal to p x = x % p; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) == 1) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // This function is called for all k trials. // It returns false if n is composite and // returns false if n is probably prime. // d is an odd number such that d*2<sup>r</sup> // = n-1 for some r >= 1 static bool miillerTest(int d, int n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 Random r = new Random(); int a = 2 + (int)(r.Next() % (n - 4)); // Compute a^d % n int x = power(a, d, n); if (x == 1 || x == n - 1) return true; // Keep squaring x while one of the // following doesn't happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n - 1) { x = (x * x) % n; d *= 2; if (x == 1) return false; if (x == n - 1) return true; } // Return composite return false; } // It returns false if n is composite // and returns true if n is probably // prime. k is an input parameter that // determines accuracy level. Higher // value of k indicates more accuracy. static bool isPrime(int n, int k) { // Corner cases if (n <= 1 || n == 4) return false; if (n <= 3) return true; // Find r such that n = 2^d * r + 1 // for some r >= 1 int d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for (int i = 0; i < k; i++) if (miillerTest(d, n) == false) return false; return true; } // Driver Code static void Main() { int k = 4; // Number of iterations Console.WriteLine("All primes smaller " + "than 100: "); for (int n = 1; n < 100; n++) if (isPrime(n, k)) Console.Write(n + " "); } } // This code is contributed by mits
PHP
<?php // PHP program Miller-Rabin primality test // Utility function to do // modular exponentiation. // It returns (x^y) % p function power($x, $y, $p) { // Initialize result $res = 1; // Update x if it is more than or // equal to p $x = $x % $p; while ($y > 0) { // If y is odd, multiply // x with result if ($y & 1) $res = ($res*$x) % $p; // y must be even now $y = $y>>1; // $y = $y/2 $x = ($x*$x) % $p; } return $res; } // This function is called // for all k trials. It returns // false if n is composite and // returns false if n is // probably prime. d is an odd // number such that d*2<sup>r</sup> = n-1 // for some r >= 1 function miillerTest($d, $n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 $a = 2 + rand() % ($n - 4); // Compute a^d % n $x = power($a, $d, $n); if ($x == 1 || $x == $n-1) return true; // Keep squaring x while one // of the following doesn't // happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while ($d != $n-1) { $x = ($x * $x) % $n; $d *= 2; if ($x == 1) return false; if ($x == $n-1) return true; } // Return composite return false; } // It returns false if n is // composite and returns true if n // is probably prime. k is an // input parameter that determines // accuracy level. Higher value of // k indicates more accuracy. function isPrime( $n, $k) { // Corner cases if ($n <= 1 || $n == 4) return false; if ($n <= 3) return true; // Find r such that n = // 2^d * r + 1 for some r >= 1 $d = $n - 1; while ($d % 2 == 0) $d /= 2; // Iterate given number of 'k' times for ($i = 0; $i < $k; $i++) if (!miillerTest($d, $n)) return false; return true; } // Driver Code // Number of iterations $k = 4; echo "All primes smaller than 100: \n"; for ($n = 1; $n < 100; $n++) if (isPrime($n, $k)) echo $n , " "; // This code is contributed by ajit ?>
Javascript
<script> // Javascript program Miller-Rabin primality test // Utility function to do // modular exponentiation. // It returns (x^y) % p function power(x, y, p) { // Initialize result let res = 1; // Update x if it is more than or // equal to p x = x % p; while (y > 0) { // If y is odd, multiply // x with result if (y & 1) res = (res*x) % p; // y must be even now y = y>>1; // y = y/2 x = (x*x) % p; } return res; } // This function is called // for all k trials. It returns // false if n is composite and // returns false if n is // probably prime. d is an odd // number such that d*2<sup>r</sup> = n-1 // for some r >= 1 function miillerTest(d, n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 let a = 2 + Math.floor(Math.random() * (n-2)) % (n - 4); // Compute a^d % n let x = power(a, d, n); if (x == 1 || x == n-1) return true; // Keep squaring x while one // of the following doesn't // happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n-1) { x = (x * x) % n; d *= 2; if (x == 1) return false; if (x == n-1) return true; } // Return composite return false; } // It returns false if n is // composite and returns true if n // is probably prime. k is an // input parameter that determines // accuracy level. Higher value of // k indicates more accuracy. function isPrime( n, k) { // Corner cases if (n <= 1 || n == 4) return false; if (n <= 3) return true; // Find r such that n = // 2^d * r + 1 for some r >= 1 let d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for (let i = 0; i < k; i++) if (!miillerTest(d, n)) return false; return true; } // Driver Code // Number of iterations let k = 4; document.write("All primes smaller than 100: <br>"); for (let n = 1; n < 100; n++) if (isPrime(n, k)) document.write(n , " "); // This code is contributed by gfgking </script>
Producción:
All primes smaller than 100: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
Complejidad de tiempo: O(k*logn)
Espacio Auxiliar: O(1)
¿Como funciona esto?
A continuación se presentan algunos hechos importantes detrás del algoritmo:
- El teorema de Fermat establece que, si n es un número primo, entonces para todo a, 1 <= a < n, a n-1 % n = 1
- Los casos base aseguran que n debe ser impar. Como n es impar, n-1 debe ser par. Y un número par se puede escribir como d * 2 s donde d es un número impar y s > 0.
- De los dos puntos anteriores, para cada número elegido al azar en el rango [2, n-2], el valor de a d*2r % n debe ser 1.
- Según el Lema de Euclides , si x 2 % n = 1 o (x 2 – 1) % n = 0 o (x-1)(x+1)% n = 0. Entonces, para que n sea primo, n divide (x-1) o n divide (x+1). Lo que significa que x % n = 1 o x % n = -1.
- De los puntos 2 y 3, podemos concluir
For n to be prime, either ad % n = 1 OR ad*2i % n = -1 for some i, where 0 <= i <= r-1.
Artículo siguiente:
Prueba de primalidad | Conjunto 4 (Solovay-Strassen)
Este artículo ha sido aportado por Ruchir Garg . Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA