Prueba de primalidad de Lucas

Un número p mayor que uno es primo si y solo si los únicos divisores de p son 1 y p . Los primeros números primos son 2, 3, 5, 7, 11, 13, …
La prueba de Lucas es una prueba de primalidad para un número natural n, puede probar la primalidad de cualquier tipo de número.
Se sigue del pequeño teorema de Fermat: si p es primo y a es un número entero, entonces a^p es congruente con a (mod p )

Test de Lucas : Un número positivo n 
es primo si existe un entero a (1 < a < n) tal que: 

a^{{n-1}}\ \equiv \ 1{\pmod n}

Y para todo factor primo q de (n-1),

a^{{({n-1})/q}}\ \not \equiv \ 1{\pmod n}

Ejemplos

Input :  n = 7
Output : 7 is Prime
Explanation : let's take a = 3, 
then 3^6 % 7 = 729 % 7 = 1 (1st 
condition satisfied). Prime factors 
of 6 are 2 and 3,
3^(6/2) % 7 = 3^3 % 7 = 27 % 7 = 6
3^(6/3) % 7 = 3^2 % 7 = 9 % 7 = 2
Hence, 7 is Prime  

Input :  n = 9
Output : 9 is composite
Explanation : Let's take a = 2,
then 2^8 % 9 = 256 % 9 = 4
Hence 9 is composite 
lucasTest(n):
If n is even
    return composite
Else
   Find all prime factors of n-1
   for i=2 to n-1
      pick 'a' randomly in range [2, n-1]
      if a^(n-1) % n not equal 1:
          return composite
      else 
          // for all q, prime factors of (n-1)
          if a^(n-1)/q % n not equal 1 
             return prime
   Return probably prime

Los problemas asociados con la prueba de Lucas son

  • Conociendo todos los factores primos de n-1
  • Encontrar una opción apropiada para un

C++

// C++ Program for Lucas Primality Test
#include <bits/stdc++.h>
using namespace std;
 
// function to generate prime factors of n
void primeFactors(int n, vector<int>& factors)
{
    // if 2 is a factor
    if (n % 2 == 0)
        factors.push_back(2);
    while (n % 2 == 0)
        n = n / 2;
         
    // if prime > 2 is factor
    for (int i = 3; i <= sqrt(n); i += 2) {
        if (n % i == 0)
            factors.push_back(i);
        while (n % i == 0)
            n = n / i;
    }
    if (n > 2)
    factors.push_back(n);
}
 
// this function produces power modulo
// some number. It can be optimized to
// using
int power(int n, int r, int q)
{
    int total = n;
    for (int i = 1; i < r; i++)
        total = (total * n) % q;
    return total;
}
 
string lucasTest(int n)
{
    // Base cases
    if (n == 1)
        return "neither prime nor composite";
    if (n == 2)
        return "prime";
    if (n % 2 == 0)
        return "composite1";
         
         
    // Generating and storing factors
    // of n-1
    vector<int> factors;
    primeFactors(n - 1, factors);
 
    // Array for random generator. This array
    // is to ensure one number is generated
    // only once
    int random[n - 3];
    for (int i = 0; i < n - 2; i++)
        random[i] = i + 2;
         
    // shuffle random array to produce randomness
    shuffle(random, random + n - 3,
            default_random_engine(time(0)));
 
    // Now one by one perform Lucas Primality
    // Test on random numbers generated.
    for (int i = 0; i < n - 2; i++) {
        int a = random[i];
        if (power(a, n - 1, n) != 1)
            return "composite";
 
        // this is to check if every factor
        // of n-1 satisfy the condition
        bool flag = true;
        for (int k = 0; k < factors.size(); k++) {
            // if a^((n-1)/q) equal 1
            if (power(a, (n - 1) / factors[k], n) == 1) {
                flag = false;
                break;
            }
        }
 
        // if all condition satisfy
        if (flag)
            return "prime";
    }
    return "probably composite";
}
 
// Driver code
int main()
{
    cout << 7 << " is " << lucasTest(7) << endl;
    cout << 9 << " is " << lucasTest(9) << endl;
    cout << 37 << " is " << lucasTest(37) << endl;
    return 0;
}

Java

// Java Program for Lucas Primality Test
import java.util.*;
 
class GFG {
    static ArrayList<Integer> factors
        = new ArrayList<Integer>();
   
    // function to generate prime factors of n
    static ArrayList<Integer> primeFactors(int n)
    {
        // if 2 is a factor
        if (n % 2 == 0)
            factors.add(2);
        while (n % 2 == 0)
            n = n / 2;
 
        // if prime > 2 is factor
        for (int i = 3; i <= Math.sqrt(n); i += 2) {
            if (n % i == 0)
                factors.add(i);
            while (n % i == 0)
                n = n / i;
        }
        if (n > 2)
            factors.add(n);
        return factors;
    }
 
    // this function produces power modulo
    // some number. It can be optimized to
    // using
    static int power(int n, int r, int q)
    {
        int total = n;
        for (int i = 1; i < r; i++)
            total = (total * n) % q;
        return total;
    }
 
    static String lucasTest(int n)
    {
        // Base cases
        if (n == 1)
            return "neither prime nor composite";
        if (n == 2)
            return "prime";
        if (n % 2 == 0)
            return "composite1";
 
        // Generating and storing factors
        // of n-1
        primeFactors(n - 1);
 
        // Array for random generator. This array
        // is to ensure one number is generated
        // only once
        int[] random = new int[n - 2];
        for (int i = 0; i < n - 2; i++)
            random[i] = i + 2;
 
        // shuffle random array to produce randomness
        Collections.shuffle(Arrays.asList(random));
 
        // Now one by one perform Lucas Primality
        // Test on random numbers generated.
        for (int i = 0; i < n - 2; i++) {
            int a = random[i];
            if (power(a, n - 1, n) != 1)
                return "composite";
 
            // this is to check if every factor
            // of n-1 satisfy the condition
            boolean flag = true;
            for (i = 0; i < factors.size(); i++) {
                // if a^((n-1)/q) equal 1
                if (power(a, (n - 1) / factors.get(i), n) == 1) {
                    flag = false;
                    break;
                }
            }
 
            // if all condition satisfy
            if (flag)
                return "prime";
        }
        return "probably composite";
    }
 
    // Driver code
    public static void main(String[] args)
    {
        System.out.println(7 + " is " + lucasTest(7));
        System.out.println(9 + " is " + lucasTest(9));
        System.out.println(37 + " is " + lucasTest(37));
    }
}
 
// This code is contributed by phasing17

Python3

# Python3 program for Lucas Primality Test
import random
import math
 
# Function to generate prime factors of n
def primeFactors(n, factors):
     
    # If 2 is a factor
    if (n % 2 == 0):
        factors.append(2)
         
    while (n % 2 == 0):
        n = n // 2
         
    # If prime > 2 is factor
    for i in range(3, int(math.sqrt(n)) + 1, 2):
        if (n % i == 0):
            factors.append(i)
             
        while (n % i == 0):
            n = n // i
             
    if (n > 2):
        factors.append(n)
         
    return factors
     
# This function produces power modulo
# some number. It can be optimized to
# using
def power(n, r, q):
     
    total = n
     
    for i in range(1, r):
        total = (total * n) % q
         
    return total
  
def lucasTest(n):
  
    # Base cases
    if (n == 1):
        return "neither prime nor composite"
    if (n == 2):
        return "prime"
    if (n % 2 == 0):
        return "composite1"
          
    # Generating and storing factors
    # of n-1
    factors = []
     
    factors = primeFactors(n - 1, factors)
  
    # Array for random generator. This array
    # is to ensure one number is generated
    # only once
    rand = [i + 2 for i in range(n - 3)]
          
    # Shuffle random array to produce randomness
    random.shuffle(rand)
  
    # Now one by one perform Lucas Primality
    # Test on random numbers generated.
    for i in range(n - 2):
        a = rand[i]
         
        if (power(a, n - 1, n) != 1):
            return "composite"
  
        # This is to check if every factor
        # of n-1 satisfy the condition
        flag = True
         
        for k in range(len(factors)):
             
            # If a^((n-1)/q) equal 1
            if (power(a, (n - 1) // factors[k], n) == 1):
                flag = False
                break
  
        # If all condition satisfy
        if (flag):
            return "prime"
     
    return "probably composite"
     
# Driver code
if __name__=="__main__":
     
    print(str(7) + " is " + lucasTest(7))
    print(str(9) + " is " + lucasTest(9))
    print(str(37) + " is " + lucasTest(37))
 
# This code is contributed by rutvik_56

C#

// C# Program for Lucas Primality Test
 
using System;
using System.Linq;
using System.Collections.Generic;
 
 
class GFG
{
    static List<int> factors = new List<int>();
    // function to generate prime factors of n
    static List<int> primeFactors(int n)
    {
        // if 2 is a factor
        if (n % 2 == 0)
            factors.Add(2);
        while (n % 2 == 0)
            n = n / 2;
             
        // if prime > 2 is factor
        for (int i = 3; i <= Math.Sqrt(n); i += 2) {
            if (n % i == 0)
                factors.Add(i);
            while (n % i == 0)
                n = n / i;
        }
        if (n > 2)
        factors.Add(n);
        return factors;
    }
     
    // this function produces power modulo
    // some number. It can be optimized to
    // using
    static int power(int n, int r, int q)
    {
        int total = n;
        for (int i = 1; i < r; i++)
            total = (total * n) % q;
        return total;
    }
     
    static string lucasTest(int n)
    {
        // Base cases
        if (n == 1)
            return "neither prime nor composite";
        if (n == 2)
            return "prime";
        if (n % 2 == 0)
            return "composite1";
             
             
        // Generating and storing factors
        // of n-1
        primeFactors(n - 1);
     
        // Array for random generator. This array
        // is to ensure one number is generated
        // only once
        int[] random = new int[n - 2];
        for (int i = 0; i < n - 2; i++)
            random[i] = i + 2;
             
        // shuffle random array to produce randomness
        Random rand = new Random();
        random = random.OrderBy(x => rand.Next()).ToArray();
     
        // Now one by one perform Lucas Primality
        // Test on random numbers generated.
        for (int i = 0; i < n - 2; i++) {
            int a = random[i];
            if (power(a, n - 1, n) != 1)
                return "composite";
     
            // this is to check if every factor
            // of n-1 satisfy the condition
            bool flag = true;
            foreach (var factor in factors) {
                // if a^((n-1)/q) equal 1
                if (power(a, (n - 1) / factor, n) == 1) {
                    flag = false;
                    break;
                }
            }
     
            // if all condition satisfy
            if (flag)
                return "prime";
        }
        return "probably composite";
    }
     
    // Driver code
    public static void Main(string[] args)
    {
        Console.WriteLine(7 + " is " + lucasTest(7));
        Console.WriteLine(9 + " is " + lucasTest(9));
        Console.WriteLine(37 + " is " + lucasTest(37));
    }
}
 
 
// This code is contributed by phasing17

Javascript

// JavaScript Program for Lucas Primality Test
 
// A function to shuffle the array.
function shuffle(arr){
    for(let i = arr.length-1; i>0;i--){
        // have a random index from [0, arr.length-1]
        let j = Math.floor(Math.random() * (i+1));
         
        // swap the original and random index element
        let temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
    return arr;
}
 
// function to generate prime factors of n
function primeFactors(n, factors) {
    // if 2 is a factor
    if (n % 2 == 0){
        factors.push(2);
    }
         
    while (n % 2 == 0){
        n = n / 2;
    }
                 
    // if prime > 2 is factor
    for (let i = 3; i <= Math.sqrt(n); i += 2) {
        if (n % i == 0){
            factors.push(i);
        }
             
        while (n % i == 0){
            n = n / i;
        }        
    }
    if (n > 2){
        factors.push(n);
    } 
}
 
// this function produces power modulo
// some number. It can be optimized to
// using
function power(n, r, q) {
    let total = n;
    for (let i = 1; i < r; i++){
        total = (total * n) % q;
    }     
    return total;
}
 
function lucasTest(n) {
     
    // Base cases
    if (n == 1){
        return "neither prime nor composite";
    }     
    if (n == 2){
       return "prime"; 
    }     
    if (n % 2 == 0){
        return "composite1";
    }
                
    // Generating and storing factors
    // of n-1
    const factors = [];
    primeFactors(n - 1, factors);
 
    // Array for random generator. This array
    // is to ensure one number is generated
    // only once
    const random = [];
    for (let i = 0; i < n - 2; i++){
        // random[i] = i + 2;
        random.push(i+2);
    }
         
    // shuffle random array to produce randomness
    shuffle(random);
 
    // Now one by one perform Lucas Primality
    // Test on random numbers generated.
    for (let i = 0; i < n - 2; i++) {
        let a = random[i];
        if (power(a, n - 1, n) != 1){
            return "composite";      
        }
             
        // this is to check if every factor
        // of n-1 satisfy the condition
        let flag = true;
        for (let k = 0; k < factors.length; k++) {
            // if a^((n-1)/q) equal 1
            if (power(a, (n - 1) / factors[k], n) == 1) {
                flag = false;
                break;
            }
        }
 
        // if all condition satisfy
        if (flag){
            return "prime";
        }
             
    }
    return "probably composite";
}
 
// Driver code
{
    console.log( 7 + " is " + lucasTest(7));
    console.log( 9 + " is " + lucasTest(9));
    console.log( 37 + " is " + lucasTest(37));
    return 0;
}
 
// The code is contributed by Gautam goel (gautamgoel962)
Javascript

Producción:

7 is prime
9 is composite
37 is prime

Complejidad de tiempo: O (nlogn)

Espacio Auxiliar: O(n)

Este método es bastante complicado e ineficiente en comparación con otras pruebas de primalidad. Y los principales problemas son los factores de ‘n-1’ y la elección de ‘a’ apropiado.

Otras pruebas de Primalidad:

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *