Dado un árbol binario completo , la tarea es imprimir los elementos en el siguiente patrón. Consideremos que el árbol es:
El árbol se recorre de la siguiente manera:
La salida para el árbol anterior es:
1 3 7 11 10 9 8 4 5 6 2
Enfoque: La idea es usar la función de búsqueda primero en amplitud modificada para almacenar todos los Nodes en cada nivel en una array de vectores. Junto con esto, el nivel máximo hasta el cual se debe atravesar el árbol también se almacena en una variable. Después de esta tarea de precálculo, se siguen los siguientes pasos para obtener la respuesta requerida:
- Cree un vector tree[] donde tree[i] almacenará todos los Nodes del árbol en el nivel i .
- Tome una variable entera k que lleva el registro del número de nivel que se está recorriendo y otra ruta variable entera que lleva el registro del número de ciclos que se han completado. También se crea una variable indicadora para realizar un seguimiento de la dirección en la que se recorre el árbol.
- Ahora, comience a imprimir los Nodes más a la derecha en cada nivel hasta alcanzar el nivel máximo .
- Dado que se alcanza el nivel máximo, se debe cambiar la dirección. En el último nivel, imprime los elementos de derecha a izquierda. Y el valor de la variable maxLevel tiene que ser decrementado.
- A medida que el árbol se recorre desde el nivel inferior al nivel superior, se imprimen los elementos más a la derecha. Dado que en la próxima iteración, el valor de maxlevel se ha cambiado, se asegura de que los Nodes ya visitados en el último nivel no se atraviesen nuevamente.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to print sideways // traversal of complete binary tree #include <bits/stdc++.h> using namespace std; const int sz = 1e5; int maxLevel = 0; // Adjacency list representation // of the tree vector<int> tree[sz + 1]; // Boolean array to mark all the // vertices which are visited bool vis[sz + 1]; // Integer array to store the level // of each node int level[sz + 1]; // Array of vector where ith index // stores all the nodes at level i vector<int> nodes[sz + 1]; // Utility function to create an // edge between two vertices void addEdge(int a, int b) { // Add a to b's list tree[a].push_back(b); // Add b to a's list tree[b].push_back(a); } // Modified Breadth-First Function void bfs(int node) { // Create a queue of {child, parent} queue<pair<int, int> > qu; // Push root node in the front of // the queue and mark as visited qu.push({ node, 0 }); nodes[0].push_back(node); vis[node] = true; level[1] = 0; while (!qu.empty()) { pair<int, int> p = qu.front(); // Dequeue a vertex from queue qu.pop(); vis[p.first] = true; // Get all adjacent vertices of the dequeued // vertex s. If any adjacent has not // been visited then enqueue it for (int child : tree[p.first]) { if (!vis[child]) { qu.push({ child, p.first }); level[child] = level[p.first] + 1; maxLevel = max(maxLevel, level[child]); nodes[level[child]].push_back(child); } } } } // Utility Function to display the pattern void display() { // k represents the level no. // cycle represents how many // cycles has been completed int k = 0, path = 0; int condn = (maxLevel) / 2 + 1; bool flag = true; // While there are nodes left to traverse while (condn--) { if (flag) { // Traversing whole level from // left to right int j = nodes[k].size() - 1; for (j = 0; j < nodes[k].size() - path; j++) cout << nodes[k][j] << " "; // Moving to new level k++; // Traversing rightmost unvisited // element in path as we // move up to down while (k < maxLevel) { j = nodes[k].size() - 1; cout << nodes[k][j - path] << " "; k++; } j = nodes[k].size() - 1; if (k > path) for (j -= path; j >= 0; j--) cout << nodes[k][j] << " "; // Setting value of new maximum // level upto which we have to traverse // next time maxLevel--; // Updating from which level to // start new path k--; path++; flag = !flag; } else { // Traversing each element of remaining // last level from left to right int j = nodes[k].size() - 1; for (j = 0; j < nodes[k].size() - path; j++) cout << nodes[k][j] << " "; // Decrementing value of Max level maxLevel--; k--; // Traversing rightmost unvisited // element in path as we // move down to up while (k > path) { int j = nodes[k].size() - 1; cout << nodes[k][j - path] << " "; k--; } j = nodes[k].size() - 1; if (k == path) for (j -= path; j >= 0; j--) cout << nodes[k][j] << " "; path++; // Updating the level number from which // a new cycle has to be started k++; flag = !flag; } } } // Driver code int main() { // Initialising the above mentioned // complete binary tree for (int i = 1; i <= 5; i++) { // Adding edge to a binary tree addEdge(i, 2 * i); addEdge(i, 2 * i + 1); } // Calling modified bfs function bfs(1); display(); return 0; }
Java
// Java program to print sideways // traversal of complete binary tree import java.util.*; class GFG { static class pair { int first, second; public pair(int first, int second) { this.first = first; this.second = second; } } static int sz = (int) 1e5; static int maxLevel = 0; // Adjacency list representation // of the tree static Vector<Integer> []tree = new Vector[sz + 1]; // Boolean array to mark all the // vertices which are visited static boolean []vis = new boolean[sz + 1]; // Integer array to store the level // of each node static int []level = new int[sz + 1]; // Array of vector where ith index // stores all the nodes at level i static Vector<Integer> []nodes = new Vector[sz + 1]; // Utility function to create an // edge between two vertices static void addEdge(int a, int b) { // Add a to b's list tree[a].add(b); // Add b to a's list tree[b].add(a); } // Modified Breadth-First Function static void bfs(int node) { // Create a queue of {child, parent} Queue<pair > qu = new LinkedList<>(); // Push root node in the front of // the queue and mark as visited qu.add(new pair( node, 0 )); nodes[0].add(node); vis[node] = true; level[1] = 0; while (!qu.isEmpty()) { pair p = qu.peek(); // Dequeue a vertex from queue qu.remove(); vis[p.first] = true; // Get all adjacent vertices of the dequeued // vertex s. If any adjacent has not // been visited then enqueue it for (int child : tree[p.first]) { if (!vis[child]) { qu.add(new pair( child, p.first )); level[child] = level[p.first] + 1; maxLevel = Math.max(maxLevel, level[child]); nodes[level[child]].add(child); } } } } // Utility Function to display the pattern static void display() { // k represents the level no. // cycle represents how many // cycles has been completed int k = 0, path = 0; int condn = (maxLevel) / 2 + 1; boolean flag = true; // While there are nodes left to traverse while (condn-- > 0) { if (flag) { // Traversing whole level from // left to right int j = nodes[k].size() - 1; for (j = 0; j < nodes[k].size() - path; j++) System.out.print(nodes[k].get(j)+ " "); // Moving to new level k++; // Traversing rightmost unvisited // element in path as we // move up to down while (k < maxLevel) { j = nodes[k].size() - 1; System.out.print(nodes[k].get(j - path)+ " "); k++; } j = nodes[k].size() - 1; if (k > path) for (j -= path; j >= 0; j--) System.out.print(nodes[k].get(j)+ " "); // Setting value of new maximum // level upto which we have to traverse // next time maxLevel--; // Updating from which level to // start new path k--; path++; flag = !flag; } else { // Traversing each element of remaining // last level from left to right int j = nodes[k].size() - 1; for (j = 0; j < nodes[k].size() - path; j++) System.out.print(nodes[k].get(j)+ " "); // Decrementing value of Max level maxLevel--; k--; // Traversing rightmost unvisited // element in path as we // move down to up while (k > path) { int c = nodes[k].size() - 1; System.out.print(nodes[k].get(c - path)+ " "); k--; } j = nodes[k].size() - 1; if (k == path) for (j -= path; j >= 0; j--) System.out.print(nodes[k].get(j)+ " "); path++; // Updating the level number from which // a new cycle has to be started k++; flag = !flag; } } } // Driver code public static void main(String[] args) { for (int i = 0; i < tree.length; i++) { tree[i] = new Vector<>(); nodes[i] = new Vector<>(); } // Initialising the above mentioned // complete binary tree for (int i = 1; i <= 5; i++) { // Adding edge to a binary tree addEdge(i, 2 * i); addEdge(i, 2 * i + 1); } // Calling modified bfs function bfs(1); display(); } } // This code is contributed by 29AjayKumar
Python3
# Python3 program to print sideways # traversal of complete binary tree from collections import deque sz = 10**5 maxLevel = 0 # Adjacency list representation # of the tree tree = [[] for i in range(sz + 1)] # Boolean array to mark all the # vertices which are visited vis = [False]*(sz + 1) # Integer array to store the level # of each node level = [0]*(sz + 1) # Array of vector where ith index # stores all the nodes at level i nodes = [[] for i in range(sz + 1)] # Utility function to create an # edge between two vertices def addEdge(a, b): # Add a to b's list tree[a].append(b) # Add b to a's list tree[b].append(a) # Modified Breadth-First Function def bfs(node): global maxLevel # Create a queue of {child, parent} qu = deque() # Push root node in the front of # the queue and mark as visited qu.append([node, 0]) nodes[0].append(node) vis[node] = True level[1] = 0 while (len(qu) > 0): p = qu.popleft() # Dequeue a vertex from queue vis[p[0]] = True # Get all adjacent vertices of the dequeued # vertex s. If any adjacent has not # been visited then enqueue it for child in tree[p[0]]: if (vis[child] == False): qu.append([child, p[0]]) level[child] = level[p[0]] + 1 maxLevel = max(maxLevel, level[child]) nodes[level[child]].append(child) # Utility Function to display the pattern def display(): global maxLevel # k represents the level no. # cycle represents how many # cycles has been completed k = 0 path = 0 condn = (maxLevel) // 2 + 1 flag = True # While there are nodes left to traverse while (condn): if (flag): # Traversing whole level from # left to right j = len(nodes[k]) - 1 for j in range(len(nodes[k])- path): print(nodes[k][j],end=" ") # Moving to new level k += 1 # Traversing rightmost unvisited # element in path as we # move up to down while (k < maxLevel): j = len(nodes[k]) - 1 print(nodes[k][j - path], end=" ") k += 1 j = len(nodes[k]) - 1 if (k > path): while j >= 0: j -= path print(nodes[k][j], end=" ") j -= 1 # Setting value of new maximum # level upto which we have to traverse # next time maxLevel -= 1 # Updating from which level to # start new path k -= 1 path += 1 flag = not flag else: # Traversing each element of remaining # last level from left to right j = len(nodes[k]) - 1 for j in range(len(nodes[k]) - path): print(nodes[k][j], end=" ") # Decrementing value of Max level maxLevel -= 1 k -= 1 # Traversing rightmost unvisited # element in path as we # move down to up while (k > path): j = len(nodes[k]) - 1 print(nodes[k][j - path], end=" ") k -= 1 j = len(nodes[k]) - 1 if (k == path): while j >= 0: j -= path print(nodes[k][j],end=" ") j -= 1 path += 1 # Updating the level number from which # a new cycle has to be started k += 1 flag = not flag condn -= 1 # Driver code if __name__ == '__main__': # Initialising the above mentioned # complete binary tree for i in range(1,6): # Adding edge to a binary tree addEdge(i, 2 * i) addEdge(i, 2 * i + 1) # Calling modified bfs function bfs(1) display() # This code is contributed by mohit kumar 29
C#
// C# program to print sideways // traversal of complete binary tree using System; using System.Collections.Generic; class GFG { class pair { public int first, second; public pair(int first, int second) { this.first = first; this.second = second; } } static int sz = (int) 1e5; static int maxLevel = 0; // Adjacency list representation // of the tree static List<int> []tree = new List<int>[sz + 1]; // Boolean array to mark all the // vertices which are visited static bool []vis = new bool[sz + 1]; // int array to store the level // of each node static int []level = new int[sz + 1]; // Array of vector where ith index // stores all the nodes at level i static List<int> []nodes = new List<int>[sz + 1]; // Utility function to create an // edge between two vertices static void addEdge(int a, int b) { // Add a to b's list tree[a].Add(b); // Add b to a's list tree[b].Add(a); } // Modified Breadth-First Function static void bfs(int node) { // Create a queue of {child, parent} Queue<pair> qu = new Queue<pair>(); // Push root node in the front of // the queue and mark as visited qu.Enqueue(new pair( node, 0 )); nodes[0].Add(node); vis[node] = true; level[1] = 0; while (qu.Count != 0) { pair p = qu.Peek(); // Dequeue a vertex from queue qu.Dequeue(); vis[p.first] = true; // Get all adjacent vertices of the dequeued // vertex s. If any adjacent has not // been visited then enqueue it foreach (int child in tree[p.first]) { if (!vis[child]) { qu.Enqueue(new pair( child, p.first )); level[child] = level[p.first] + 1; maxLevel = Math.Max(maxLevel, level[child]); nodes[level[child]].Add(child); } } } } // Utility Function to display the pattern static void display() { // k represents the level no. // cycle represents how many // cycles has been completed int k = 0, path = 0; int condn = (maxLevel) / 2 + 1; bool flag = true; // While there are nodes left to traverse while (condn-- > 0) { if (flag) { // Traversing whole level from // left to right int j = nodes[k].Count - 1; for (j = 0; j < nodes[k].Count - path; j++) Console.Write(nodes[k][j]+ " "); // Moving to new level k++; // Traversing rightmost unvisited // element in path as we // move up to down while (k < maxLevel) { j = nodes[k].Count - 1; Console.Write(nodes[k][j - path]+ " "); k++; } j = nodes[k].Count - 1; if (k > path) for (j -= path; j >= 0; j--) Console.Write(nodes[k][j]+ " "); // Setting value of new maximum // level upto which we have to traverse // next time maxLevel--; // Updating from which level to // start new path k--; path++; flag = !flag; } else { // Traversing each element of remaining // last level from left to right int j = nodes[k].Count - 1; for (j = 0; j < nodes[k].Count - path; j++) Console.Write(nodes[k][j]+ " "); // Decrementing value of Max level maxLevel--; k--; // Traversing rightmost unvisited // element in path as we // move down to up while (k > path) { int c = nodes[k].Count - 1; Console.Write(nodes[k]+ " "); k--; } j = nodes[k].Count - 1; if (k == path) for (j -= path; j >= 0; j--) Console.Write(nodes[k][j]+ " "); path++; // Updating the level number from which // a new cycle has to be started k++; flag = !flag; } } } // Driver code public static void Main(String[] args) { for (int i = 0; i < tree.Length; i++) { tree[i] = new List<int>(); nodes[i] = new List<int>(); } // Initialising the above mentioned // complete binary tree for (int i = 1; i <= 5; i++) { // Adding edge to a binary tree addEdge(i, 2 * i); addEdge(i, 2 * i + 1); } // Calling modified bfs function bfs(1); display(); } } // This code contributed by PrinciRaj1992
Javascript
<script> // Javascript program to print sideways // traversal of complete binary tree let sz = 1e5; let maxLevel = 0; // Adjacency list representation // of the tree let tree = new Array(sz + 1); // Boolean array to mark all the // vertices which are visited let vis = new Array(sz + 1); // Integer array to store the level // of each node let level = new Array(sz + 1); // Array of vector where ith index // stores all the nodes at level i let nodes = new Array(sz + 1); // Utility function to create an // edge between two vertices function addEdge(a,b) { // Add a to b's list tree[a].push(b); // Add b to a's list tree[b].push(a); } // Modified Breadth-First Function function bfs(node) { // Create a queue of {child, parent} let qu = []; // Push root node in the front of // the queue and mark as visited qu.push([ node, 0 ]); nodes[0].push(node); vis[node] = true; level[1] = 0; while (qu.length!=0) { let p = qu[0]; // Dequeue a vertex from queue qu.shift(); vis[p[0]] = true; // Get all adjacent vertices of the dequeued // vertex s. If any adjacent has not // been visited then enqueue it for (let child=0;child<tree[p[0]].length;child++) { if (!vis[tree[p[0]][child]]) { qu.push([ tree[p[0]][child], p[0] ]); level[tree[p[0]][child]] = level[p[0]] + 1; maxLevel = Math.max(maxLevel, level[tree[p[0]][child]]); nodes[level[tree[p[0]][child]]].push(tree[p[0]][child]); } } } } // Utility Function to display the pattern function display() { // k represents the level no. // cycle represents how many // cycles has been completed let k = 0, path = 0; let condn = Math.floor((maxLevel) / 2) + 1; let flag = true; // While there are nodes left to traverse while (condn-- > 0) { if (flag) { // Traversing whole level from // left to right let j = nodes[k].length - 1; for (j = 0; j < nodes[k].length - path; j++) document.write(nodes[k][j]+ " "); // Moving to new level k++; // Traversing rightmost unvisited // element in path as we // move up to down while (k < maxLevel) { j = nodes[k].length - 1; document.write(nodes[k][j - path]+ " "); k++; } j = nodes[k].length - 1; if (k > path) for (j -= path; j >= 0; j--) document.write(nodes[k][j]+ " "); // Setting value of new maximum // level upto which we have to traverse // next time maxLevel--; // Updating from which level to // start new path k--; path++; flag = !flag; } else { // Traversing each element of remaining // last level from left to right let j = nodes[k].length - 1; for (j = 0; j < nodes[k].length - path; j++) document.write(nodes[k][j]+ " "); // Decrementing value of Max level maxLevel--; k--; // Traversing rightmost unvisited // element in path as we // move down to up while (k > path) { let c = nodes[k].length - 1; document.write(nodes[k]+ " "); k--; } j = nodes[k].length - 1; if (k == path) for (j -= path; j >= 0; j--) document.write(nodes[k][j]+ " "); path++; // Updating the level number from which // a new cycle has to be started k++; flag = !flag; } } } // Driver code for (let i = 0; i < tree.length; i++) { tree[i] = []; nodes[i] = []; vis[i]=false; level[i]=0; } // Initialising the above mentioned // complete binary tree for (let i = 1; i <= 5; i++) { // Adding edge to a binary tree addEdge(i, 2 * i); addEdge(i, 2 * i + 1); } // Calling modified bfs function bfs(1); display(); // This code is contributed by unknown2108 </script>
Producción:
1 3 7 11 10 9 8 4 5 6 2