Recorrido lateral de un árbol binario completo

Dado un árbol binario completo , la tarea es imprimir los elementos en el siguiente patrón. Consideremos que el árbol es:
 

El árbol se recorre de la siguiente manera:
 

La salida para el árbol anterior es: 
 

1 3 7 11 10 9 8 4 5 6 2

Enfoque: La idea es usar la función de búsqueda primero en amplitud modificada para almacenar todos los Nodes en cada nivel en una array de vectores. Junto con esto, el nivel máximo hasta el cual se debe atravesar el árbol también se almacena en una variable. Después de esta tarea de precálculo, se siguen los siguientes pasos para obtener la respuesta requerida: 
 

  1. Cree un vector tree[] donde tree[i] almacenará todos los Nodes del árbol en el nivel i .
  2. Tome una variable entera k que lleva el registro del número de nivel que se está recorriendo y otra ruta variable entera que lleva el registro del número de ciclos que se han completado. También se crea una variable indicadora para realizar un seguimiento de la dirección en la que se recorre el árbol.
  3. Ahora, comience a imprimir los Nodes más a la derecha en cada nivel hasta alcanzar el nivel máximo .
  4. Dado que se alcanza el nivel máximo, se debe cambiar la dirección. En el último nivel, imprime los elementos de derecha a izquierda. Y el valor de la variable maxLevel tiene que ser decrementado.
  5. A medida que el árbol se recorre desde el nivel inferior al nivel superior, se imprimen los elementos más a la derecha. Dado que en la próxima iteración, el valor de maxlevel se ha cambiado, se asegura de que los Nodes ya visitados en el último nivel no se atraviesen nuevamente.

A continuación se muestra la implementación del enfoque anterior:
 

C++

// C++ program to print sideways
// traversal of complete binary tree
 
#include <bits/stdc++.h>
using namespace std;
 
const int sz = 1e5;
int maxLevel = 0;
 
// Adjacency list representation
// of the tree
vector<int> tree[sz + 1];
 
// Boolean array to mark all the
// vertices which are visited
bool vis[sz + 1];
 
// Integer array to store the level
// of each node
int level[sz + 1];
 
// Array of vector where ith index
// stores all the nodes at level i
vector<int> nodes[sz + 1];
 
// Utility function to create an
// edge between two vertices
void addEdge(int a, int b)
{
 
    // Add a to b's list
    tree[a].push_back(b);
 
    // Add b to a's list
    tree[b].push_back(a);
}
 
// Modified Breadth-First Function
void bfs(int node)
{
 
    // Create a queue of {child, parent}
    queue<pair<int, int> > qu;
 
    // Push root node in the front of
    // the queue and mark as visited
    qu.push({ node, 0 });
    nodes[0].push_back(node);
    vis[node] = true;
    level[1] = 0;
 
    while (!qu.empty()) {
 
        pair<int, int> p = qu.front();
 
        // Dequeue a vertex from queue
        qu.pop();
        vis[p.first] = true;
 
        // Get all adjacent vertices of the dequeued
        // vertex s. If any adjacent has not
        // been visited then enqueue it
        for (int child : tree[p.first]) {
 
            if (!vis[child]) {
                qu.push({ child, p.first });
                level[child] = level[p.first] + 1;
                maxLevel = max(maxLevel, level[child]);
                nodes[level[child]].push_back(child);
            }
        }
    }
}
 
// Utility Function to display the pattern
void display()
{
    // k represents the level no.
    // cycle represents how many
    // cycles has been completed
    int k = 0, path = 0;
    int condn = (maxLevel) / 2 + 1;
    bool flag = true;
 
    // While there are nodes left to traverse
    while (condn--) {
 
        if (flag) {
 
            // Traversing whole level from
            // left to right
            int j = nodes[k].size() - 1;
            for (j = 0; j < nodes[k].size() - path; j++)
                cout << nodes[k][j] << " ";
 
            // Moving to new level
            k++;
 
            // Traversing rightmost unvisited
            // element  in path as we
            // move up to down
            while (k < maxLevel) {
 
                j = nodes[k].size() - 1;
                cout << nodes[k][j - path] << " ";
                k++;
            }
 
            j = nodes[k].size() - 1;
            if (k > path)
                for (j -= path; j >= 0; j--)
                    cout << nodes[k][j] << " ";
 
            // Setting value of new maximum
            // level upto which we have to traverse
            // next time
            maxLevel--;
 
            // Updating from which level to
            // start new path
            k--;
            path++;
 
            flag = !flag;
        }
        else {
 
            // Traversing each element of remaining
            // last level from left to right
            int j = nodes[k].size() - 1;
            for (j = 0; j < nodes[k].size() - path; j++)
                cout << nodes[k][j] << " ";
 
            // Decrementing value of Max level
            maxLevel--;
 
            k--;
 
            // Traversing rightmost unvisited
            // element  in path as we
            // move down to up
            while (k > path) {
 
                int j = nodes[k].size() - 1;
                cout << nodes[k][j - path] << " ";
                k--;
            }
 
            j = nodes[k].size() - 1;
 
            if (k == path)
                for (j -= path; j >= 0; j--)
                    cout << nodes[k][j] << " ";
 
            path++;
 
            // Updating the level number from which
            // a new cycle has to be started
            k++;
            flag = !flag;
        }
    }
}
 
// Driver code
int main()
{
 
    // Initialising  the above mentioned
    // complete binary tree
    for (int i = 1; i <= 5; i++) {
 
        // Adding edge to a binary tree
        addEdge(i, 2 * i);
        addEdge(i, 2 * i + 1);
    }
 
    // Calling modified bfs function
    bfs(1);
 
    display();
 
    return 0;
}

Java

// Java program to print sideways
// traversal of complete binary tree
import java.util.*;
 
class GFG
{
     
static class pair
{
    int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
static int sz = (int) 1e5;
static int maxLevel = 0;
 
// Adjacency list representation
// of the tree
static Vector<Integer> []tree = new Vector[sz + 1];
 
// Boolean array to mark all the
// vertices which are visited
static boolean []vis = new boolean[sz + 1];
 
// Integer array to store the level
// of each node
static int []level = new int[sz + 1];
 
// Array of vector where ith index
// stores all the nodes at level i
static Vector<Integer> []nodes = new Vector[sz + 1];
 
// Utility function to create an
// edge between two vertices
static void addEdge(int a, int b)
{
 
    // Add a to b's list
    tree[a].add(b);
 
    // Add b to a's list
    tree[b].add(a);
}
 
// Modified Breadth-First Function
static void bfs(int node)
{
 
    // Create a queue of {child, parent}
    Queue<pair > qu = new LinkedList<>();
 
    // Push root node in the front of
    // the queue and mark as visited
    qu.add(new pair( node, 0 ));
    nodes[0].add(node);
    vis[node] = true;
    level[1] = 0;
 
    while (!qu.isEmpty()) {
 
        pair p = qu.peek();
 
        // Dequeue a vertex from queue
        qu.remove();
        vis[p.first] = true;
 
        // Get all adjacent vertices of the dequeued
        // vertex s. If any adjacent has not
        // been visited then enqueue it
        for (int child : tree[p.first]) {
 
            if (!vis[child]) {
                qu.add(new pair( child, p.first ));
                level[child] = level[p.first] + 1;
                maxLevel = Math.max(maxLevel, level[child]);
                nodes[level[child]].add(child);
            }
        }
    }
}
 
// Utility Function to display the pattern
static void display()
{
    // k represents the level no.
    // cycle represents how many
    // cycles has been completed
    int k = 0, path = 0;
    int condn = (maxLevel) / 2 + 1;
    boolean flag = true;
 
    // While there are nodes left to traverse
    while (condn-- > 0) {
 
        if (flag) {
 
            // Traversing whole level from
            // left to right
            int j = nodes[k].size() - 1;
            for (j = 0; j < nodes[k].size() - path; j++)
                System.out.print(nodes[k].get(j)+ " ");
 
            // Moving to new level
            k++;
 
            // Traversing rightmost unvisited
            // element in path as we
            // move up to down
            while (k < maxLevel) {
 
                j = nodes[k].size() - 1;
                System.out.print(nodes[k].get(j - path)+ " ");
                k++;
            }
 
            j = nodes[k].size() - 1;
            if (k > path)
                for (j -= path; j >= 0; j--)
                    System.out.print(nodes[k].get(j)+ " ");
 
            // Setting value of new maximum
            // level upto which we have to traverse
            // next time
            maxLevel--;
 
            // Updating from which level to
            // start new path
            k--;
            path++;
 
            flag = !flag;
        }
        else {
 
            // Traversing each element of remaining
            // last level from left to right
            int j = nodes[k].size() - 1;
            for (j = 0; j < nodes[k].size() - path; j++)
                System.out.print(nodes[k].get(j)+ " ");
 
            // Decrementing value of Max level
            maxLevel--;
 
            k--;
 
            // Traversing rightmost unvisited
            // element in path as we
            // move down to up
            while (k > path) {
 
                int c = nodes[k].size() - 1;
                System.out.print(nodes[k].get(c - path)+ " ");
                k--;
            }
 
            j = nodes[k].size() - 1;
 
            if (k == path)
                for (j -= path; j >= 0; j--)
                    System.out.print(nodes[k].get(j)+ " ");
 
            path++;
 
            // Updating the level number from which
            // a new cycle has to be started
            k++;
            flag = !flag;
        }
    }
}
 
// Driver code
public static void main(String[] args)
{
 
    for (int i = 0; i < tree.length; i++) {
        tree[i] = new Vector<>();
        nodes[i] = new Vector<>();
    }
     
    // Initialising the above mentioned
    // complete binary tree
    for (int i = 1; i <= 5; i++) {
 
        // Adding edge to a binary tree
        addEdge(i, 2 * i);
        addEdge(i, 2 * i + 1);
    }
 
    // Calling modified bfs function
    bfs(1);
 
    display();
}
}
 
// This code is contributed by 29AjayKumar

Python3

# Python3 program to print sideways
# traversal of complete binary tree
from collections import deque
 
sz = 10**5
maxLevel = 0
 
# Adjacency list representation
# of the tree
tree = [[] for i in range(sz + 1)]
 
# Boolean array to mark all the
# vertices which are visited
vis = [False]*(sz + 1)
 
# Integer array to store the level
# of each node
level = [0]*(sz + 1)
 
# Array of vector where ith index
# stores all the nodes at level i
nodes = [[] for i in range(sz + 1)]
 
# Utility function to create an
# edge between two vertices
def addEdge(a, b):
 
    # Add a to b's list
    tree[a].append(b)
 
    # Add b to a's list
    tree[b].append(a)
 
# Modified Breadth-First Function
def bfs(node):
    global maxLevel
 
    # Create a queue of {child, parent}
    qu = deque()
 
    # Push root node in the front of
    # the queue and mark as visited
    qu.append([node, 0])
    nodes[0].append(node)
    vis[node] = True
    level[1] = 0
 
    while (len(qu) > 0):
 
        p = qu.popleft()
 
        # Dequeue a vertex from queue
        vis[p[0]] = True
 
        # Get all adjacent vertices of the dequeued
        # vertex s. If any adjacent has not
        # been visited then enqueue it
        for child in tree[p[0]]:
 
            if (vis[child] == False):
                qu.append([child, p[0]])
                level[child] = level[p[0]] + 1
                maxLevel = max(maxLevel, level[child])
                nodes[level[child]].append(child)
 
# Utility Function to display the pattern
def display():
    global maxLevel
     
    # k represents the level no.
    # cycle represents how many
    # cycles has been completed
    k = 0
    path = 0
    condn = (maxLevel) // 2 + 1
    flag = True
 
    # While there are nodes left to traverse
    while (condn):
 
        if (flag):
 
            # Traversing whole level from
            # left to right
            j = len(nodes[k]) - 1
            for j in range(len(nodes[k])- path):
                print(nodes[k][j],end=" ")
 
            # Moving to new level
            k += 1
 
            # Traversing rightmost unvisited
            # element in path as we
            # move up to down
            while (k < maxLevel):
 
                j = len(nodes[k]) - 1
                print(nodes[k][j - path], end=" ")
                k += 1
 
            j = len(nodes[k]) - 1
            if (k > path):
                while j >= 0:
                    j -= path
                    print(nodes[k][j], end=" ")
                    j -= 1
 
            # Setting value of new maximum
            # level upto which we have to traverse
            # next time
            maxLevel -= 1
 
            # Updating from which level to
            # start new path
            k -= 1
            path += 1
 
            flag = not flag
        else:
 
            # Traversing each element of remaining
            # last level from left to right
            j = len(nodes[k]) - 1
            for j in range(len(nodes[k]) - path):
                print(nodes[k][j], end=" ")
 
            # Decrementing value of Max level
            maxLevel -= 1
 
            k -= 1
 
            # Traversing rightmost unvisited
            # element in path as we
            # move down to up
            while (k > path):
 
                j = len(nodes[k]) - 1
                print(nodes[k][j - path], end=" ")
                k -= 1
 
            j = len(nodes[k]) - 1
 
            if (k == path):
                while j >= 0:
                    j -= path
                    print(nodes[k][j],end=" ")
                    j -= 1
 
            path += 1
 
            # Updating the level number from which
            # a new cycle has to be started
            k += 1
            flag = not flag
        condn -= 1
 
# Driver code
if __name__ == '__main__':
 
    # Initialising the above mentioned
    # complete binary tree
    for i in range(1,6):
 
        # Adding edge to a binary tree
        addEdge(i, 2 * i)
        addEdge(i, 2 * i + 1)
 
    # Calling modified bfs function
    bfs(1)
 
    display()
 
# This code is contributed by mohit kumar 29

C#

// C# program to print sideways
// traversal of complete binary tree
using System;
using System.Collections.Generic;
 
class GFG
{
      
class pair
{
    public int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
static int sz = (int) 1e5;
static int maxLevel = 0;
  
// Adjacency list representation
// of the tree
static List<int> []tree = new List<int>[sz + 1];
  
// Boolean array to mark all the
// vertices which are visited
static bool []vis = new bool[sz + 1];
  
// int array to store the level
// of each node
static int []level = new int[sz + 1];
  
// Array of vector where ith index
// stores all the nodes at level i
static List<int> []nodes = new List<int>[sz + 1];
  
// Utility function to create an
// edge between two vertices
static void addEdge(int a, int b)
{
  
    // Add a to b's list
    tree[a].Add(b);
  
    // Add b to a's list
    tree[b].Add(a);
}
  
// Modified Breadth-First Function
static void bfs(int node)
{
  
    // Create a queue of {child, parent}
    Queue<pair> qu = new Queue<pair>();
  
    // Push root node in the front of
    // the queue and mark as visited
    qu.Enqueue(new pair( node, 0 ));
    nodes[0].Add(node);
    vis[node] = true;
    level[1] = 0;
  
    while (qu.Count != 0) {
  
        pair p = qu.Peek();
  
        // Dequeue a vertex from queue
        qu.Dequeue();
        vis[p.first] = true;
  
        // Get all adjacent vertices of the dequeued
        // vertex s. If any adjacent has not
        // been visited then enqueue it
        foreach (int child in tree[p.first]) {
  
            if (!vis[child]) {
                qu.Enqueue(new pair( child, p.first ));
                level[child] = level[p.first] + 1;
                maxLevel = Math.Max(maxLevel, level[child]);
                nodes[level[child]].Add(child);
            }
        }
    }
}
  
// Utility Function to display the pattern
static void display()
{
    // k represents the level no.
    // cycle represents how many
    // cycles has been completed
    int k = 0, path = 0;
    int condn = (maxLevel) / 2 + 1;
    bool flag = true;
  
    // While there are nodes left to traverse
    while (condn-- > 0) {
  
        if (flag) {
  
            // Traversing whole level from
            // left to right
            int j = nodes[k].Count - 1;
            for (j = 0; j < nodes[k].Count - path; j++)
                Console.Write(nodes[k][j]+ " ");
  
            // Moving to new level
            k++;
  
            // Traversing rightmost unvisited
            // element in path as we
            // move up to down
            while (k < maxLevel) {
  
                j = nodes[k].Count - 1;
                Console.Write(nodes[k][j - path]+ " ");
                k++;
            }
  
            j = nodes[k].Count - 1;
            if (k > path)
                for (j -= path; j >= 0; j--)
                    Console.Write(nodes[k][j]+ " ");
  
            // Setting value of new maximum
            // level upto which we have to traverse
            // next time
            maxLevel--;
  
            // Updating from which level to
            // start new path
            k--;
            path++;
  
            flag = !flag;
        }
        else {
  
            // Traversing each element of remaining
            // last level from left to right
            int j = nodes[k].Count - 1;
            for (j = 0; j < nodes[k].Count - path; j++)
                Console.Write(nodes[k][j]+ " ");
  
            // Decrementing value of Max level
            maxLevel--;
  
            k--;
  
            // Traversing rightmost unvisited
            // element in path as we
            // move down to up
            while (k > path) {
  
                int c = nodes[k].Count - 1;
                Console.Write(nodes[k]+ " ");
                k--;
            }
  
            j = nodes[k].Count - 1;
  
            if (k == path)
                for (j -= path; j >= 0; j--)
                    Console.Write(nodes[k][j]+ " ");
  
            path++;
  
            // Updating the level number from which
            // a new cycle has to be started
            k++;
            flag = !flag;
        }
    }
}
  
// Driver code
public static void Main(String[] args)
{
  
    for (int i = 0; i < tree.Length; i++) {
        tree[i] = new List<int>();
        nodes[i] = new List<int>();
    }
      
    // Initialising the above mentioned
    // complete binary tree
    for (int i = 1; i <= 5; i++) {
  
        // Adding edge to a binary tree
        addEdge(i, 2 * i);
        addEdge(i, 2 * i + 1);
    }
  
    // Calling modified bfs function
    bfs(1);
  
    display();
}
}
 
// This code contributed by PrinciRaj1992

Javascript

<script>
// Javascript program to print sideways
// traversal of complete binary tree
 
let sz =  1e5;
let maxLevel = 0;
 
// Adjacency list representation
// of the tree
let tree = new Array(sz + 1);
 
// Boolean array to mark all the
// vertices which are visited
let vis = new Array(sz + 1);
 
// Integer array to store the level
// of each node
let level = new Array(sz + 1);
 
// Array of vector where ith index
// stores all the nodes at level i
let nodes = new Array(sz + 1);
 
// Utility function to create an
// edge between two vertices
function addEdge(a,b)
{
    // Add a to b's list
    tree[a].push(b);
  
    // Add b to a's list
    tree[b].push(a);
}
 
// Modified Breadth-First Function
function bfs(node)
{
    // Create a queue of {child, parent}
    let qu = [];
  
    // Push root node in the front of
    // the queue and mark as visited
    qu.push([ node, 0 ]);
    nodes[0].push(node);
    vis[node] = true;
    level[1] = 0;
  
    while (qu.length!=0) {
  
        let p = qu[0];
  
        // Dequeue a vertex from queue
        qu.shift();
        vis[p[0]] = true;
  
        // Get all adjacent vertices of the dequeued
        // vertex s. If any adjacent has not
        // been visited then enqueue it
        for (let child=0;child<tree[p[0]].length;child++) {
  
            if (!vis[tree[p[0]][child]]) {
                qu.push([ tree[p[0]][child], p[0] ]);
                level[tree[p[0]][child]] = level[p[0]] + 1;
                maxLevel = Math.max(maxLevel, level[tree[p[0]][child]]);
                nodes[level[tree[p[0]][child]]].push(tree[p[0]][child]);
            }
        }
    }
}
 
// Utility Function to display the pattern
function display()
{
    // k represents the level no.
    // cycle represents how many
    // cycles has been completed
    let k = 0, path = 0;
    let condn = Math.floor((maxLevel) / 2) + 1;
    let flag = true;
  
    // While there are nodes left to traverse
    while (condn-- > 0) {
  
        if (flag) {
  
            // Traversing whole level from
            // left to right
            let j = nodes[k].length - 1;
            for (j = 0; j < nodes[k].length - path; j++)
                document.write(nodes[k][j]+ " ");
  
            // Moving to new level
            k++;
  
            // Traversing rightmost unvisited
            // element in path as we
            // move up to down
            while (k < maxLevel) {
  
                j = nodes[k].length - 1;
                document.write(nodes[k][j - path]+ " ");
                k++;
            }
  
            j = nodes[k].length - 1;
            if (k > path)
                for (j -= path; j >= 0; j--)
                    document.write(nodes[k][j]+ " ");
  
            // Setting value of new maximum
            // level upto which we have to traverse
            // next time
            maxLevel--;
  
            // Updating from which level to
            // start new path
            k--;
            path++;
  
            flag = !flag;
        }
        else {
  
            // Traversing each element of remaining
            // last level from left to right
            let j = nodes[k].length - 1;
            for (j = 0; j < nodes[k].length - path; j++)
                document.write(nodes[k][j]+ " ");
  
            // Decrementing value of Max level
            maxLevel--;
  
            k--;
  
            // Traversing rightmost unvisited
            // element in path as we
            // move down to up
            while (k > path) {
  
                let c = nodes[k].length - 1;
                document.write(nodes[k]+ " ");
                k--;
            }
  
            j = nodes[k].length - 1;
  
            if (k == path)
                for (j -= path; j >= 0; j--)
                    document.write(nodes[k][j]+ " ");
  
            path++;
  
            // Updating the level number from which
            // a new cycle has to be started
            k++;
            flag = !flag;
        }
    }
}
 
// Driver code
for (let i = 0; i < tree.length; i++) {
        tree[i] = [];
        nodes[i] = [];
        vis[i]=false;
        level[i]=0;
    }
      
    // Initialising the above mentioned
    // complete binary tree
    for (let i = 1; i <= 5; i++) {
  
        // Adding edge to a binary tree
        addEdge(i, 2 * i);
        addEdge(i, 2 * i + 1);
    }
  
    // Calling modified bfs function
    bfs(1);
  
    display();
 
 
// This code is contributed by unknown2108
</script>
Producción: 

1 3 7 11 10 9 8 4 5 6 2

 

Publicación traducida automáticamente

Artículo escrito por chsadik99 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *