Recuento de caminos de Fibonacci en un árbol binario

Dado un árbol binario , la tarea es contar el número de rutas de Fibonacci en el árbol binario dado. 

La ruta de Fibonacci es una ruta que contiene todos los Nodes en la ruta de la raíz a la hoja que son términos de la serie de Fibonacci .

Ejemplo: 

Input:
             0
           /    \
          1      1
         / \    /  \
        1  10  70   1
                   /  \
                  81   2
Output: 2 
Explanation:
There are 2 Fibonacci path for
the above Binary Tree, for x = 3,
Path 1: 0 1 1
Path 2: 0 1 1 2

Input:
             8
           /    \
          4      81
         / \    /  \
        3   2  70   243
                   /   \
                  81   909
Output: 0

Enfoque: La idea es usar Preorder Tree Traversal . Durante el recorrido previo al pedido del árbol binario dado, haga lo siguiente:  

  1. Primero calcule la altura del árbol binario .
  2. Ahora cree un vector de longitud igual a la altura del árbol, de modo que contenga números de Fibonacci .
  3. Si el valor actual del Node en el i -ésimo nivel no es igual al i -ésimo término de la serie de Fibonacci o el puntero se convierte en NULL , devuelva el conteo.
  4. Si el Node actual es un Node hoja, incremente el conteo en 1.
  5. Llame recursivamente al subárbol izquierdo y derecho con el recuento actualizado.
  6. Después de una llamada totalmente recursiva, el valor de la cuenta es el número de rutas de Fibonacci para un árbol binario dado.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ program to count all of
// Fibonacci paths in a Binary tree
 
#include <bits/stdc++.h>
using namespace std;
 
// Vector to store the fibonacci series
vector<int> fib;
 
// Binary Tree Node
struct node {
    struct node* left;
    int data;
    struct node* right;
};
 
// Function to create a new tree node
node* newNode(int data)
{
    node* temp = new node;
    temp->data = data;
    temp->left = NULL;
    temp->right = NULL;
    return temp;
}
 
// Function to find the height
// of the given tree
int height(node* root)
{
    int ht = 0;
    if (root == NULL)
        return 0;
 
    return (max(height(root->left),
                height(root->right))
            + 1);
}
 
// Function to make fibonacci series
// upto n terms
void FibonacciSeries(int n)
{
    fib.push_back(0);
    fib.push_back(1);
    for (int i = 2; i < n; i++)
        fib.push_back(fib[i - 1]
                      + fib[i - 2]);
}
 
// Preorder Utility function to count
// exponent path in a given Binary tree
int CountPathUtil(node* root,
                  int i, int count)
{
 
    // Base Condition, when node pointer
    // becomes null or node value is not
    // a number of pow(x, y )
    if (root == NULL
        || !(fib[i] == root->data)) {
        return count;
    }
 
    // Increment count when
    // encounter leaf node
    if (!root->left
        && !root->right) {
        count++;
    }
 
    // Left recursive call
    // save the value of count
    count = CountPathUtil(
        root->left, i + 1, count);
 
    // Right recursive call and
    // return value of count
    return CountPathUtil(
        root->right, i + 1, count);
}
 
// Function to find whether
// fibonacci path exists or not
void CountPath(node* root)
{
    // To find the height
    int ht = height(root);
 
    // Making fibonacci series
    // upto ht terms
    FibonacciSeries(ht);
 
    cout << CountPathUtil(root, 0, 0);
}
 
// Driver code
int main()
{
    // Create binary tree
    node* root = newNode(0);
 
    root->left = newNode(1);
    root->right = newNode(1);
 
    root->left->left = newNode(1);
    root->left->right = newNode(4);
    root->right->right = newNode(1);
    root->right->right->left = newNode(2);
 
    // Function Call
    CountPath(root);
 
    return 0;
}

Java

// Java program to count all of
// Fibonacci paths in a Binary tree
import java.util.*;
 
class GFG{
 
// Vector to store the fibonacci series
static Vector<Integer> fib = new Vector<Integer>();
 
// Binary Tree Node
static class node {
    node left;
    int data;
    node right;
};
 
// Function to create a new tree node
static node newNode(int data)
{
    node temp = new node();
    temp.data = data;
    temp.left = null;
    temp.right = null;
    return temp;
}
 
// Function to find the height
// of the given tree
static int height(node root)
{
    if (root == null)
        return 0;
 
    return (Math.max(height(root.left),
                height(root.right))
            + 1);
}
 
// Function to make fibonacci series
// upto n terms
static void FibonacciSeries(int n)
{
    fib.add(0);
    fib.add(1);
    for (int i = 2; i < n; i++)
        fib.add(fib.get(i - 1)
                    + fib.get(i - 2));
}
 
// Preorder Utility function to count
// exponent path in a given Binary tree
static int CountPathUtil(node root,
                int i, int count)
{
 
    // Base Condition, when node pointer
    // becomes null or node value is not
    // a number of Math.pow(x, y )
    if (root == null
        || !(fib.get(i) == root.data)) {
        return count;
    }
 
    // Increment count when
    // encounter leaf node
    if (root.left != null
        && root.right != null) {
        count++;
    }
 
    // Left recursive call
    // save the value of count
    count = CountPathUtil(
        root.left, i + 1, count);
 
    // Right recursive call and
    // return value of count
    return CountPathUtil(
        root.right, i + 1, count);
}
 
// Function to find whether
// fibonacci path exists or not
static void CountPath(node root)
{
    // To find the height
    int ht = height(root);
 
    // Making fibonacci series
    // upto ht terms
    FibonacciSeries(ht);
 
    System.out.print(CountPathUtil(root, 0, 0));
}
 
// Driver code
public static void main(String[] args)
{
    // Create binary tree
    node root = newNode(0);
 
    root.left = newNode(1);
    root.right = newNode(1);
 
    root.left.left = newNode(1);
    root.left.right = newNode(4);
    root.right.right = newNode(1);
    root.right.right.left = newNode(2);
 
    // Function Call
    CountPath(root);
 
}
}
 
// This code is contributed by 29AjayKumar

Python3

# Python3 program to count all of
# Fibonacci paths in a Binary tree
  
# Vector to store the fibonacci series
fib = []
  
# Binary Tree Node
class node:
     
    def __init__(self, data):
         
        self.data = data
        self.left = None
        self.right = None
  
# Function to create a new tree node
def newNode(data):
 
    temp = node(data)
    return temp
  
# Function to find the height
# of the given tree
def height(root):
 
    ht = 0
     
    if (root == None):
        return 0
  
    return (max(height(root.left),
                height(root.right)) + 1)
 
# Function to make fibonacci series
# upto n terms
def FibonacciSeries(n):
 
    fib.append(0)
    fib.append(1)
     
    for i in range(2, n):
        fib.append(fib[i - 1] + fib[i - 2])
 
# Preorder Utility function to count
# exponent path in a given Binary tree
def CountPathUtil(root, i, count):
  
    # Base Condition, when node pointer
    # becomes null or node value is not
    # a number of pow(x, y )
    if (root == None or not (fib[i] == root.data)):
        return count
     
    # Increment count when
    # encounter leaf node
    if (not root.left and not root.right):
        count += 1
  
    # Left recursive call
    # save the value of count
    count = CountPathUtil(root.left, i + 1, count)
  
    # Right recursive call and
    # return value of count
    return CountPathUtil(root.right, i + 1, count)
 
# Function to find whether
# fibonacci path exists or not
def CountPath(root):
 
    # To find the height
    ht = height(root)
  
    # Making fibonacci series
    # upto ht terms
    FibonacciSeries(ht)
     
    print(CountPathUtil(root, 0, 0))
 
# Driver code
if __name__=='__main__':
 
    # Create binary tree
    root = newNode(0)
  
    root.left = newNode(1)
    root.right = newNode(1)
  
    root.left.left = newNode(1)
    root.left.right = newNode(4)
    root.right.right = newNode(1)
    root.right.right.left = newNode(2)
  
    # Function Call
    CountPath(root)
  
# This code is contributed by rutvik_56

C#

// C# program to count all of
// Fibonacci paths in a Binary tree
using System;
using System.Collections.Generic;
 
class GFG{
  
// List to store the fibonacci series
static List<int> fib = new List<int>();
  
// Binary Tree Node
class node {
    public node left;
    public int data;
    public node right;
};
  
// Function to create a new tree node
static node newNode(int data)
{
    node temp = new node();
    temp.data = data;
    temp.left = null;
    temp.right = null;
    return temp;
}
  
// Function to find the height
// of the given tree
static int height(node root)
{
    if (root == null)
        return 0;
  
    return (Math.Max(height(root.left),
                height(root.right))
            + 1);
}
  
// Function to make fibonacci series
// upto n terms
static void FibonacciSeries(int n)
{
    fib.Add(0);
    fib.Add(1);
    for (int i = 2; i < n; i++)
        fib.Add(fib[i - 1]
                    + fib[i - 2]);
}
  
// Preorder Utility function to count
// exponent path in a given Binary tree
static int CountPathUtil(node root,
                int i, int count)
{
  
    // Base Condition, when node pointer
    // becomes null or node value is not
    // a number of Math.Pow(x, y)
    if (root == null
        || !(fib[i] == root.data)) {
        return count;
    }
  
    // Increment count when
    // encounter leaf node
    if (root.left != null
        && root.right != null) {
        count++;
    }
  
    // Left recursive call
    // save the value of count
    count = CountPathUtil(
        root.left, i + 1, count);
  
    // Right recursive call and
    // return value of count
    return CountPathUtil(
        root.right, i + 1, count);
}
  
// Function to find whether
// fibonacci path exists or not
static void CountPath(node root)
{
    // To find the height
    int ht = height(root);
  
    // Making fibonacci series
    // upto ht terms
    FibonacciSeries(ht);
  
    Console.Write(CountPathUtil(root, 0, 0));
}
  
// Driver code
public static void Main(String[] args)
{
    // Create binary tree
    node root = newNode(0);
  
    root.left = newNode(1);
    root.right = newNode(1);
  
    root.left.left = newNode(1);
    root.left.right = newNode(4);
    root.right.right = newNode(1);
    root.right.right.left = newNode(2);
  
    // Function Call
    CountPath(root);
}
}
 
// This code is contributed by Princi Singh

Javascript

<script>
 
    // JavaScript program to count all of
    // Fibonacci paths in a Binary tree
     
    // Vector to store the fibonacci series
    let fib = [];
 
    // Binary Tree Node
    class node {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    };
 
    // Function to create a new tree node
    function newNode(data)
    {
        let temp = new node(data);
        return temp;
    }
 
    // Function to find the height
    // of the given tree
    function height(root)
    {
        if (root == null)
            return 0;
 
        return (Math.max(height(root.left),
                    height(root.right))
                + 1);
    }
 
    // Function to make fibonacci series
    // upto n terms
    function FibonacciSeries(n)
    {
        fib.push(0);
        fib.push(1);
        for (let i = 2; i < n; i++)
            fib.push(fib[i - 1] + fib[i - 2]);
    }
 
    // Preorder Utility function to count
    // exponent path in a given Binary tree
    function CountPathUtil(root, i, count)
    {
 
        // Base Condition, when node pointer
        // becomes null or node value is not
        // a number of Math.pow(x, y )
        if (root == null
            || !(fib[i] == root.data)) {
            return count;
        }
 
        // Increment count when
        // encounter leaf node
        if (root.left != null
            && root.right != null) {
            count++;
        }
 
        // Left recursive call
        // save the value of count
        count = CountPathUtil(root.left, i + 1, count);
 
        // Right recursive call and
        // return value of count
        return CountPathUtil(root.right, i + 1, count);
    }
 
    // Function to find whether
    // fibonacci path exists or not
    function CountPath(root)
    {
        // To find the height
        let ht = height(root);
 
        // Making fibonacci series
        // upto ht terms
        FibonacciSeries(ht);
 
        document.write(CountPathUtil(root, 0, 0));
    }
     
    // Create binary tree
    let root = newNode(0);
  
    root.left = newNode(1);
    root.right = newNode(1);
  
    root.left.left = newNode(1);
    root.left.right = newNode(4);
    root.right.right = newNode(1);
    root.right.right.left = newNode(2);
  
    // Function Call
    CountPath(root);
   
</script>
Producción: 

2

 

Publicación traducida automáticamente

Artículo escrito por chsadik99 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *