Dado un gráfico con N Nodes que tienen valores P o M . También dados K pares de enteros como (x, y) que representan los bordes en el gráfico, de modo que si a está conectado a b y b está conectado a c , entonces a y c también estarán conectados.
Un solo componente conexo se llama grupo. El grupo puede tener valores P y M. Si los valores de P son mayores que los valores de M , este grupo se denomina influenciado por P y lo mismo ocurre con M. Si el número de P y M es igual, entonces se llama grupo neutral. La tarea es encontrar el número de grupos influenciados por P , influenciados por M y neutrales .
Ejemplos:
Entrada: Nodes[] = {P, M, P, M, P}, bordes[][] = {
{1, 3},
{4, 5},
{3, 5}}
Salida:
P = 1
M = 1
N = 0
Habrá dos grupos de índices
{1, 3, 4, 5} y {2}.
El primer grupo está influenciado por P y
el segundo está influenciado por M.Entrada: Nodes[] = {P, M, P, M, P}, bordes[][] = { {
1, 3},
{4, 5}}
Salida:
P = 1
M = 2
N = 0
Enfoque: es más fácil construir un gráfico con una lista de adyacencia y un ciclo de 1 a N y hacer DFS y verificar el conteo de P y M.
Otra forma es usar DSU con una pequeña modificación de que la array de tamaño será de par para que puede mantener el conteo de M y P . En este enfoque, no hay necesidad de construir el gráfico ya que la operación de combinación se encargará del componente conectado. Tenga en cuenta que debe tener el conocimiento de DSU por tamaño/clasificación para la optimización.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // To store the parents // of the current node vector<int> par; // To store the size of M and P vector<pair<int, int> > sz; // Function for initialization void init(vector<char>& nodes) { // Size of the graph int n = (int)nodes.size(); par.clear(); sz.clear(); par.resize(n + 1); sz.resize(n + 1); for (int i = 0; i <= n; ++i) { par[i] = i; if (i > 0) { // If the node is P if (nodes[i - 1] == 'P') sz[i] = { 0, 1 }; // If the node is M else sz[i] = { 1, 0 }; } } } // To find the parent of // the current node int parent(int i) { while (par[i] != i) i = par[i]; return i; } // Merge function void union(int a, int b) { a = parent(a); b = parent(b); if (a == b) return; // Total size by adding number of M and P int sz_a = sz[a].first + sz[a].second; int sz_b = sz[b].first + sz[b].second; if (sz_a < sz_b) swap(a, b); par[b] = a; sz[a].first += sz[b].first; sz[a].second += sz[b].second; return; } // Function to calculate the influenced value void influenced(vector<char>& nodes, vector<pair<int, int> > connect) { // Number of nodes int n = (int)nodes.size(); // Initialization function init(nodes); // Size of the connected vector int k = connect.size(); // Performing union operation for (int i = 0; i < k; ++i) { union(connect[i].first, connect[i].second); } // ne = Number of neutal groups // ma = Number of M influenced groups // pe = Number of P influenced groups int ne = 0, ma = 0, pe = 0; for (int i = 1; i <= n; ++i) { int x = parent(i); if (x == i) { if (sz[i].first == sz[i].second) { ne++; } else if (sz[i].first > sz[i].second) { ma++; } else { pe++; } } } cout << "P = " << pe << "\nM = " << ma << "\nN = " << ne << "\n"; } // Driver code int main() { // Nodes at each index ( 1 - base indexing ) vector<char> nodes = { 'P', 'M', 'P', 'M', 'P' }; // Connected Pairs vector<pair<int, int> > connect = { { 1, 3 }, { 3, 5 }, { 4, 5 } }; influenced(nodes, connect); return 0; }
Java
// Java implementation of the approach import java.io.*; import java.util.*; class GFG{ // To store the parents // of the current node static ArrayList<Integer> par = new ArrayList<Integer>(); // To store the size of M and P static ArrayList< ArrayList<Integer>> sz = new ArrayList< ArrayList<Integer>>(); // Function for initialization static void init(ArrayList<Character> nodes) { // Size of the graph int n = nodes.size(); for(int i = 0; i <= n; ++i) { par.add(i); if (i == 0) { sz.add(new ArrayList<Integer>( Arrays.asList(0, 0))); } if (i > 0) { // If the node is P if (nodes.get(i - 1) == 'P') { sz.add(new ArrayList<Integer>( Arrays.asList(0, 1))); } // If the node is M else { sz.add(new ArrayList<Integer>( Arrays.asList(1, 0))); } } } } // To find the parent of // the current node static int parent(int i) { while (par.get(i) != i) { i = par.get(i); } return i; } // Merge function static void union(int a, int b) { a = parent(a); b = parent(b); if (a == b) { return; } // Total size by adding number // of M and P int sz_a = sz.get(a).get(0) + sz.get(a).get(1); int sz_b = sz.get(b).get(0) + sz.get(b).get(1); if (sz_a < sz_b) { int temp = a; a = b; b = temp; } par.set(b, a); sz.get(a).set(0, sz.get(a).get(0) + sz.get(b).get(0)); sz.get(a).set(1, sz.get(a).get(1) + sz.get(b).get(1)); return; } // Function to calculate the influenced value static void influenced(ArrayList<Character> nodes, ArrayList<ArrayList<Integer>> connect) { // Number of nodes int n = nodes.size(); // Initialization function init(nodes); // Size of the connected vector int k = connect.size(); // Performing union operation for(int i = 0; i < k; ++i) { union(connect.get(i).get(0), connect.get(i).get(1)); } // ne = Number of neutal groups // ma = Number of M influenced groups // pe = Number of P influenced groups int ne = 0, ma = 0, pe = 0; for(int i = 1; i <= n; ++i) { int x = parent(i); if (x == i) { if (sz.get(i).get(0) == sz.get(i).get(1)) { ne++; } else if (sz.get(i).get(0) > sz.get(i).get(1)) { ma++; } else { pe++; } } } System.out.println("P = " + pe + "\nM = " + ma + "\nN = " + ne); } // Driver code public static void main(String[] args) { // Nodes at each index ( 1 - base indexing ) ArrayList<Character> nodes = new ArrayList<Character>(); nodes.add('P'); nodes.add('M'); nodes.add('P'); nodes.add('M'); nodes.add('P'); // Connected Pairs ArrayList< ArrayList<Integer>> connect = new ArrayList< ArrayList<Integer>>(); connect.add(new ArrayList<Integer>( Arrays.asList(1, 3))); connect.add(new ArrayList<Integer>( Arrays.asList(3, 5))); connect.add(new ArrayList<Integer>( Arrays.asList(4, 5))); influenced(nodes, connect); } } // This code is contributed by avanitrachhadiya2155
Python3
# Python3 implementation of the approach # To store the parents # of the current node par = [] # To store the size of M and P sz = [] # Function for initialization def init(nodes): # Size of the graph n = len(nodes) for i in range(n + 1): par.append(0) sz.append(0) for i in range(n + 1): par[i] = i if (i > 0): # If the node is P if (nodes[i - 1] == 'P'): sz[i] = [0, 1] # If the node is M else: sz[i] = [1, 0] # To find the parent of # the current node def parent(i): while (par[i] != i): i = par[i] return i # Merge function def union(a, b): a = parent(a) b = parent(b) if (a == b): return # Total size by adding number of M and P sz_a = sz[a][0] + sz[a][1] sz_b = sz[b][0] + sz[b][1] if (sz_a < sz_b): a, b = b, a par[b] = a sz[a][0] += sz[b][0] sz[a][1] += sz[b][1] return # Function to calculate the influenced value def influenced(nodes,connect): # Number of nodes n = len(nodes) # Initialization function init(nodes) # Size of the connected vector k = len(connect) # Performing union operation for i in range(k): union(connect[i][0], connect[i][1]) # ne = Number of neutal groups # ma = Number of M influenced groups # pe = Number of P influenced groups ne = 0 ma = 0 pe = 0 for i in range(1, n + 1): x = parent(i) if (x == i): if (sz[i][0] == sz[i][1]): ne += 1 elif (sz[i][0] > sz[i][1]): ma += 1 else: pe += 1 print("P =",pe,"\nM =",ma,"\nN =",ne) # Driver code # Nodes at each index ( 1 - base indexing ) nodes = [ 'P', 'M', 'P', 'M', 'P' ] # Connected Pairs connect = [ [ 1, 3 ], [ 3, 5 ], [ 4, 5 ] ] influenced(nodes, connect) # This code is contributed by mohit kumar 29
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG{ // To store the parents // of the current node static List<int> par = new List<int>(); // To store the size of M and P static List<List<int>> sz = new List<List<int>>(); // Function for initialization static void init(List<char> nodes) { // Size of the graph int n = nodes.Count; for(int i = 0; i <= n; ++i) { par.Add(i); if (i == 0) { sz.Add(new List<int>(){0, 0}); } if (i > 0) { // If the node is P if (nodes[i - 1] == 'P') { sz.Add(new List<int>(){0, 1}); } // If the node is M else { sz.Add(new List<int>(){1, 0}); } } } } // To find the parent of // the current node static int parent(int i) { while (par[i] != i) { i = par[i]; } return i; } // Merge function static void union(int a, int b) { a = parent(a); b = parent(b); if (a == b) { return; } // Total size by adding number // of M and P int sz_a = sz[a][0] + sz[a][1]; int sz_b = sz[b][0] + sz[b][1]; if (sz_a < sz_b) { int temp = a; a = b; b = temp; } par[b] = a; sz[a][0] += sz[b][0]; sz[a][1] += sz[b][1]; return; } // Function to calculate the influenced value static void influenced(List<char> nodes, List<List<int>> connect) { // Number of nodes int n = nodes.Count; // Initialization function init(nodes); // Size of the connected vector int k = connect.Count; // Performing union operation for(int i = 0; i < k; ++i) { union(connect[i][0], connect[i][1]); } // ne = Number of neutal groups // ma = Number of M influenced groups // pe = Number of P influenced groups int ne = 0, ma = 0, pe = 0; for(int i = 1; i <= n; ++i) { int x = parent(i); if (x == i) { if (sz[i][0] == sz[i][1]) { ne++; } else if (sz[i][0] > sz[i][1]) { ma++; } else { pe++; } } } Console.WriteLine("P = " + pe + "\nM = " + ma + "\nN = " + ne); } // Driver code static public void Main() { // Nodes at each index ( 1 - base indexing ) List<char> nodes = new List<char>(){'P', 'M', 'P', 'M', 'P'}; // Connected Pairs List<List<int>> connect = new List<List<int>>(); connect.Add(new List<int>(){1, 3}); connect.Add(new List<int>(){3, 5}); connect.Add(new List<int>(){4, 5}); influenced(nodes, connect); } } // This code is contributed by rag2127
Javascript
<script> // Javascript implementation of the approach // To store the parents // of the current node let par = []; // To store the size of M and P let sz = []; // Function for initialization function init(nodes) { // Size of the graph let n = nodes.length; for(let i = 0; i <= n; ++i) { par.push(i); if (i == 0) { sz.push([0,0]); } if (i > 0) { // If the node is P if (nodes[i - 1] == 'P') { sz.push([0,1]); } // If the node is M else { sz.push([1,0]); } } } } // To find the parent of // the current node function parent(i) { while (par[i] != i) { i = par[i]; } return i; } // Merge function function union(a,b) { a = parent(a); b = parent(b); if (a == b) { return; } // Total size by adding number // of M and P let sz_a = sz[a][0] + sz[a][1]; let sz_b = sz[b][0] + sz[b][1]; if (sz_a < sz_b) { let temp = a; a = b; b = temp; } par[b] = a; sz[a][0] = sz[a][0] + sz[b][0]; sz[a][1] = sz[a][1] + sz[b][1]; return; } // Function to calculate the influenced value function influenced(nodes,connect) { // Number of nodes let n = nodes.length; // Initialization function init(nodes); // Size of the connected vector let k = connect.length; // Performing union operation for(let i = 0; i < k; ++i) { union(connect[i][0], connect[i][1]); } // ne = Number of neutal groups // ma = Number of M influenced groups // pe = Number of P influenced groups let ne = 0, ma = 0, pe = 0; for(let i = 1; i <= n; ++i) { let x = parent(i); if (x == i) { if (sz[i][0] == sz[i][1]) { ne++; } else if (sz[i][0] > sz[i][1]) { ma++; } else { pe++; } } } document.write("P = " + pe + "<br>M = " + ma + "<br>N = " + ne); } // Driver code // Nodes at each index ( 1 - base indexing ) let nodes =[]; nodes.push('P'); nodes.push('M'); nodes.push('P'); nodes.push('M'); nodes.push('P'); // Connected Pairs let connect = []; connect.push([1,3]); connect.push([3,5]); connect.push([4,5]); influenced(nodes, connect); // This code is contributed by patel2127 </script>
P = 1 M = 1 N = 0
Complejidad temporal: O(N).
Espacio Auxiliar : O(N).