Recuento de formas de generar Secuencia de enteros impares consecutivos distintos con suma N

Dado un número entero N , la tarea es encontrar el número total de formas en que se puede formar una secuencia que consiste en números enteros impares consecutivos distintos que suman N .

Ejemplos :

Entrada : N = 45
Salida : 3
Explicación : 3 formas de elegir distintos números impares consecutivos que suman 45 son: 
{5, 7, 9, 11, 13}, {13, 15, 17} y {45}.

Entrada : N = 20
Salida : 1
Explicación : 9 y 11 son los únicos números impares consecutivos cuya suma es 20

 

Enfoque:   La idea para resolver el problema se basa en la idea de la suma de los primeros K enteros impares consecutivos :

  • La suma de los primeros K enteros impares consecutivos es K 2 .
  • Sea una secuencia de enteros impares consecutivos desde (y+1)-ésimo número impar hasta x -ésimo número impar (x > y) , cuya suma es N.
  • Entonces, x 2 – y 2 = N o (x + y) * (x – y) = N .
  • Sean a y b dos divisores de N. Por lo tanto, a * b=N .
    • Por lo tanto, x + y = a & x – y = b
    • Resolviendo estos dos, obtenemos x = (a + b) / 2 .
  • Esto implica que si (a + b) es par, entonces x e y serían integrales, lo que significa que existiría una secuencia de enteros impares consecutivos que suman N .

Siga los pasos mencionados a continuación para implementar la observación anterior:

  • Iterar a través de todos los pares de divisores, de modo que su producto sea N .
  • Si la suma de dicho par de divisores es par, incrementa la cuenta de respuesta en 1.
  • Devuelve el recuento final al final.

A continuación se muestra la implementación del enfoque anterior.

C++

// C++ program for above approach:
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate
// Number of sequence of odd integers that
// Contains distinct consecutive odd integers
// That add up to N.
int numberOfSequences(int N)
{
    // Initializing count variable by 0,
    // That stores the number of sequences
    int count = 0;
 
    // Iterating through all divisors of N
    for (int i = 1; i * i <= N; i++) {
        if (N % i == 0) {
 
            // If sum of the two divisors
            // Is even, we increment
            // The count by 1
            int divisor1 = i;
            int divisor2 = N / i;
            int sum = divisor1 + divisor2;
            if (sum % 2 == 0) {
                count++;
            }
        }
    }
 
    // Returning total count
    // After completing the iteration
    return count;
}
 
// Driver Code
int main()
{
    int N = 45;
 
    // Function call
    int number_of_sequences = numberOfSequences(N);
    cout << number_of_sequences;
    return 0;
}

Java

// JAVA program to check whether sum
// Is equal to target value
// After K operations
import java.util.*;
class GFG
{
 
  // Function to calculate
  // Number of sequence of odd integers that
  // Contains distinct consecutive odd integers
  // That add up to N.
  static int numberOfSequences(int N)
  {
    // Initializing count variable by 0,
    // That stores the number of sequences
    int count = 0;
 
    // Iterating through all divisors of N
    for (int i = 1; i * i <= N; i++) {
      if (N % i == 0) {
 
        // If sum of the two divisors
        // Is even, we increment
        // The count by 1
        int divisor1 = i;
        int divisor2 = N / i;
        int sum = divisor1 + divisor2;
        if (sum % 2 == 0) {
          count++;
        }
      }
    }
 
    // Returning total count
    // After completing the iteration
    return count;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int N = 45;
 
    // Function call
    int number_of_sequences = numberOfSequences(N);
    System.out.print(number_of_sequences);
  }
}
 
// This code is contributed by sanjoy_62.

Python3

# Python code for the above approach
import math
 
# Function to calculate
# Number of sequence of odd integers that
# Contains distinct consecutive odd integers
# That add up to N.
def numberOfSequences(N):
 
    # Initializing count variable by 0,
    # That stores the number of sequences
    count = 0;
 
    # Iterating through all divisors of N
    for i in range(1,math.ceil(math.sqrt(N))):
        if (N % i == 0):
           
            # If sum of the two divisors
            # Is even, we increment
            # The count by 1
            divisor1 = i;
            divisor2 = N //i;
            sum = divisor1 + divisor2;
            if (sum % 2 == 0):
                count = count + 1
             
    # Returning total count
    # After completing the iteration
    return count;
 
# Driver Code
N = 45;
 
# Function call
number_of_sequences = numberOfSequences(N);
print(number_of_sequences);
    
# This code is contributed by Potta Lokesh

C#

// C# program for above approach:
using System;
class GFG {
 
  // Function to calculate
  // Number of sequence of odd integers that
  // Contains distinct consecutive odd integers
  // That add up to N.
  static int numberOfSequences(int N)
  {
    // Initializing count variable by 0,
    // That stores the number of sequences
    int count = 0;
 
    // Iterating through all divisors of N
    for (int i = 1; i * i <= N; i++) {
      if (N % i == 0) {
 
        // If sum of the two divisors
        // Is even, we increment
        // The count by 1
        int divisor1 = i;
        int divisor2 = N / i;
        int sum = divisor1 + divisor2;
        if (sum % 2 == 0) {
          count++;
        }
      }
    }
 
    // Returning total count
    // After completing the iteration
    return count;
  }
 
  // Driver Code
  public static void Main()
  {
    int N = 45;
 
    // Function call
    int number_of_sequences = numberOfSequences(N);
    Console.Write(number_of_sequences);
  }
}
 
// This code is contributed by Samim Hossain Mondal.

Javascript

<script>
    // JavaScript program for above approach:
 
    // Function to calculate
    // Number of sequence of odd integers that
    // Contains distinct consecutive odd integers
    // That add up to N.
    const numberOfSequences = (N) => {
     
        // Initializing count variable by 0,
        // That stores the number of sequences
        let count = 0;
 
        // Iterating through all divisors of N
        for (let i = 1; i * i <= N; i++) {
            if (N % i == 0) {
 
                // If sum of the two divisors
                // Is even, we increment
                // The count by 1
                let divisor1 = i;
                let divisor2 = parseInt(N / i);
                let sum = divisor1 + divisor2;
                if (sum % 2 == 0) {
                    count++;
                }
            }
        }
 
        // Returning total count
        // After completing the iteration
        return count;
    }
 
    // Driver Code
    let N = 45;
 
    // Function call
    let number_of_sequences = numberOfSequences(N);
    document.write(number_of_sequences);
 
// This code is contributed by rakeshsahni
 
</script>
Producción

3

Complejidad de Tiempo : O(√N)
Espacio Auxiliar : O(1)

Publicación traducida automáticamente

Artículo escrito por kamabokogonpachiro y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *