Dada una array arr[] de longitud N y un número K , la tarea es contar el número de K-cuentas regresivas en la array.
Se dice que un subarreglo contiguo es una cuenta regresiva K si tiene una longitud K y contiene los números enteros K, K-1, K-2, …, 2, 1 en ese orden. Por ejemplo, [4, 3, 2, 1] es una cuenta regresiva de 4 y [6, 5, 4, 3, 2, 1] es una cuenta regresiva de 6.
Ejemplos:
Entrada: K = 2, arr[] = {3 2 1 2 2 1}
Salida: 2
Explicación: Aquí, K=2 por lo que la array tiene 2 2-Cuenta atrás (2, 1). Una cuenta regresiva es del índice 1 al 2 y la otra es del índice 4 al 5.
Entrada: K = 3, arr[] = {4 3 2 1 5 3 2 1}
Salida: 2
Explicación: Aquí, K=3 entonces el array tiene 2 3-Cuenta atrás (3, 2, 1)
Enfoque: Se recorre la array dada y cada vez que se encuentra el número K, se verifica si todos los números K, K-1, K-2, … hasta 1 están secuencialmente presentes en la array o no. En caso afirmativo, la cuenta aumenta en 1. Si el siguiente número lo saca de la secuencia, se busca la siguiente aparición de K.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ code for the above program. #include <bits/stdc++.h> using namespace std; // Function to to count the // number of K-countdowns for // multiple queries int countKCountdown(int arr[], int N, int K) { // flag which stores the // current value of value // in the countdown int flag = -1; // count of K-countdowns int count = 0; // Loop to iterate over the // elements of the array for (int i = 0; i < N; i++) { // condition check if // the elements // of the array is // equal to K if (arr[i] == K) flag = K; // condition check if // the elements // of the array is in // continuous order if (arr[i] == flag) flag--; // condition check if // the elements // of the array are not // in continuous order else flag = -1; // condition check to // increment the counter // if the there is a // K-countdown present // in the array if (flag == 0) count++; } // returning the count of // K-countdowns return count; } // Driver Code int main() { int N = 8; int K = 3; int arr[N] = { 4, 3, 2, 1, 5, 3, 2, 1 }; // Function Call cout << countKCountdown(arr, N, K); }
Java
// Java code for the above program. class GFG{ // Function to to count the // number of K-countdowns for // multiple queries public static int countKCountdown(int arr[], int N, int K) { // Flag which stores the // current value of value // in the countdown int flag = -1; // Count of K-countdowns int count = 0; // Loop to iterate over the // elements of the array for(int i = 0; i < N; i++) { // Condition check if the // elements of the array is // equal to K if (arr[i] == K) flag = K; // Condition check if the // elements of the array is // in continuous order if (arr[i] == flag) flag--; // Condition check if the // elements of the array are // not in continuous order else flag = -1; // Condition check to increment // the counter if the there is a // K-countdown present in the array if (flag == 0) count++; } // Returning the count of // K-countdowns return count; } // Driver code public static void main(String[] args) { int N = 8; int K = 3; int arr[] = { 4, 3, 2, 1, 5, 3, 2, 1 }; System.out.print(countKCountdown(arr, N, K)); } } // This code is contributed by divyeshrabadiya07
Python3
# Python3 code for the above program. # Function to to count the # number of K-countdowns for # multiple queries def countKCountdown(arr, N, K): # flag which stores the # current value of value # in the countdown flag = -1; # count of K-countdowns count = 0; # Loop to iterate over the # elements of the array for i in range(0, N): # condition check if # the elements # of the array is # equal to K if (arr[i] == K): flag = K; # condition check if # the elements # of the array is in # continuous order if (arr[i] == flag): flag -= 1; # condition check if # the elements # of the array are not # in continuous order else: flag = -1; # condition check to # increment the counter # if the there is a # K-countdown present # in the array if (flag == 0): count += 1; # returning the count of # K-countdowns return count; # Driver Code N = 8; K = 3; arr = [ 4, 3, 2, 1, 5, 3, 2, 1 ]; # Function Call print(countKCountdown(arr, N, K)) # This code is contributed by Akanksha_Rai
C#
// C# code for the above program. using System; class GFG{ // Function to to count the // number of K-countdowns for // multiple queries public static int countKCountdown(int []arr, int N, int K) { // Flag which stores the // current value of value // in the countdown int flag = -1; // Count of K-countdowns int count = 0; // Loop to iterate over the // elements of the array for(int i = 0; i < N; i++) { // Condition check if the // elements of the array is // equal to K if (arr[i] == K) flag = K; // Condition check if the // elements of the array is // in continuous order if (arr[i] == flag) flag--; // Condition check if the // elements of the array are // not in continuous order else flag = -1; // Condition check to increment // the counter if the there is a // K-countdown present in the array if (flag == 0) count++; } // Returning the count of // K-countdowns return count; } // Driver code public static void Main() { int N = 8; int K = 3; int []arr = { 4, 3, 2, 1, 5, 3, 2, 1 }; Console.Write(countKCountdown(arr, N, K)); } } // This code is contributed by Akanksha_Rai
Javascript
<script> //Javascript code for the above program. // Function to to count the // number of K-countdowns for // multiple queries function countKCountdown( arr, N, K) { // flag which stores the // current value of value // in the countdown var flag = -1; // count of K-countdowns var count = 0; // Loop to iterate over the // elements of the array for (var i = 0; i < N; i++) { // condition check if // the elements // of the array is // equal to K if (arr[i] == K) flag = K; // condition check if // the elements // of the array is in // continuous order if (arr[i] == flag) flag--; // condition check if // the elements // of the array are not // in continuous order else flag = -1; // condition check to // increment the counter // if the there is a // K-countdown present // in the array if (flag == 0) count++; } // returning the count of // K-countdowns return count; } var N = 8; var K = 3; var arr = [ 4, 3, 2, 1, 5, 3, 2, 1 ]; // Function Call document.write( countKCountdown(arr, N, K)); // This code is contributed by SoumikMondal </script>
2
Complejidad de Tiempo: O(N)
Complejidad de Espacio Auxiliar: O(1)