Dado un rango representado por dos enteros positivos l y r y dos enteros d y m . Encuentre el conteo de números que se encuentran en el rango que es divisible por m y tenga el dígito d en las posiciones pares del número. (es decir, el dígito d no debe aparecer en una posición impar). Nota: Ambos números l y r tienen el mismo número de dígitos.
Ejemplos:
Entrada: l = 10, r = 99, d = 8, m = 2
Salida: 8
Explicación: Los números válidos son 18, 28, 38, 48, 58, 68, 78 y 98.
88 no es un número válido ya que 8 también está presente en una posición impar.
Entrada: l = 1000, r = 9999, d = 7, m = 19
Salida: 6
Requisitos previos: enfoque de dígitos DP : en primer lugar, si somos capaces de contar los números requeridos hasta R, es decir, en el rango [0, R], podemos llegar fácilmente a nuestra respuesta en el rango [L, R] resolviendo de cero a R y luego restando la respuesta que obtenemos después de resolver de cero a L – 1. Ahora, necesitamos definir los estados de DP. Estados DP:
- Dado que podemos considerar nuestro número como una secuencia de dígitos, un estado es la posición en la que nos encontramos actualmente. Esta posición puede tener valores de 0 a 18 si estamos tratando con los números hasta 1018. En cada llamada recursiva, trata de construir la secuencia de izquierda a derecha colocando un dígito del 0 al 9.
- El segundo estado es el resto que define el módulo del número que hemos hecho hasta ahora módulo m.
- Otro estado es la variable booleana tight que indica que el número que estamos tratando de construir ya se ha vuelto más pequeño que R, de modo que en las próximas llamadas recursivas podemos colocar cualquier dígito del 0 al 9. Si el número no se ha vuelto más pequeño, el límite máximo de dígito que podemos colocar es dígito en la posición actual en R.
Si la posición actual es una posición par, simplemente colocamos el dígito d y resolvemos recursivamente para las siguientes posiciones. Pero si la posición actual es una posición impar, podemos colocar cualquier dígito excepto d y resolver para las siguientes posiciones.
A continuación se muestra la implementación del enfoque anterior.
C++
// CPP Program to find the count of // numbers in a range divisible by m // having digit d at even positions #include <bits/stdc++.h> using namespace std; const int M = 20; // states - position, rem, tight int dp[M][M][2]; // d is required digit and number should // be divisible by m int d, m; // This function returns the count of // required numbers from 0 to num int count(int pos, int rem, int tight, vector<int> num) { // Last position if (pos == num.size()) { if (rem == 0) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos][rem][tight] != -1) return dp[pos][rem][tight]; // If the current position is even, place // digit d, but since we have considered // 0-indexing, check for odd positions if (pos % 2) { if (tight == 0 && d > num[pos]) return 0; int currTight = tight; // At this position, number becomes // smaller if (d < num[pos]) currTight = 1; int res = count(pos + 1, (10 * rem + d) % m, currTight, num); return dp[pos][rem][tight] = res; } int ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] int limit = (tight ? 9 : num[pos]); for (int dig = 0; dig <= limit; dig++) { if (dig == d) continue; int currTight = tight; // At this position, number becomes // smaller if (dig < num[pos]) currTight = 1; // Next recursive call, also set nonz // to 1 if current digit is non zero ans += count(pos + 1, (10 * rem + dig) % m, currTight, num); } return dp[pos][rem][tight] = ans; } // Function to convert x into its digit vector // and uses count() function to return the // required count int solve(int x) { vector<int> num; while (x) { num.push_back(x % 10); x /= 10; } reverse(num.begin(), num.end()); // Initialize dp memset(dp, -1, sizeof(dp)); return count(0, 0, 0, num); } // Driver Code to test above functions int main() { int L = 10, R = 99; d = 8, m = 2; cout << solve(R) - solve(L) << endl; return 0; }
Java
// Java Program to find the count of // numbers in a range divisible by m // having digit d at even positions import java.util.*; class GFG { static int M = 20; // states - position, rem, tight static Integer[][][] dp = new Integer[M][M][2]; // d is required digit and number should // be divisible by m static int d, m; // This function returns the count of // required numbers from 0 to num static int count(int pos, int rem, int tight, Vector<Integer> num) { // Last position if (pos == num.size()) { if (rem == 0) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos][rem][tight] != -1) return dp[pos][rem][tight]; // If the current position is even, place // digit d, but since we have considered // 0-indexing, check for odd positions if (pos % 2 == 1) { if (tight == 0 && d > num.elementAt(pos)) return 0; int currTight = tight; // At this position, number becomes // smaller if (d < num.elementAt(pos)) currTight = 1; int res = count(pos + 1, (10 * rem + d) % m, currTight, num); return dp[pos][rem][tight] = res; } int ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] int limit = (tight != 0) ? 9 : num.elementAt(pos); for (int dig = 0; dig <= limit; dig++) { if (dig == d) continue; int currTight = tight; // At this position, number becomes // smaller if (dig < num.elementAt(pos)) currTight = 1; // Next recursive call, also set nonz // to 1 if current digit is non zero ans += count(pos + 1, (10 * rem + dig) % m, currTight, num); } return dp[pos][rem][tight] = ans; } // Function to convert x into its digit vector // and uses count() function to return the // required count static int solve(int x) { Vector<Integer> num = new Vector<>(); while (x > 0) { num.add(x % 10); x /= 10; } Collections.reverse(num); // Initialize dp for (int i = 0; i < dp.length; i++) for (int j = 0; j < dp[i].length; j++) for (int k = 0; k < dp[i][j].length; k++) dp[i][j][k] = -1; return count(0, 0, 0, num); } // Driver Code public static void main(String[] args) { int L = 10, R = 99; d = 8; m = 2; System.out.println(solve(R) - solve(L)); } } // This code is contributed by // sanjeev2552
Python3
# Python3 Program to find the count of # numbers in a range divisible by m # having digit d at even positions # This Function returns the count of # required numbers from 0 to num def count(pos, rem, tight, num): # Last position if pos == len(num): if rem == 0: return 1 return 0 # If this result is already # computed simply return it if dp[pos][rem][tight] != -1: return dp[pos][rem][tight] # If the current position is even, # place digit d, but since we have # considered 0-indexing, check for # odd positions if pos % 2 == 1: if tight == 0 and d > num[pos]: return 0 currTight = tight # At this position, number # becomes smaller if d < num[pos]: currTight = 1 res = count(pos + 1, (10 * rem + d) % m, currTight, num) dp[pos][rem][tight] = res return res ans = 0 # Maximum limit upto which we can place # digit. If tight is 1, means number has # already become smaller so we can place # any digit, otherwise num[pos] limit = 9 if tight else num[pos] for dig in range(0, limit + 1): if dig == d: continue currTight = tight # At this position, number becomes # smaller if dig < num[pos]: currTight = 1 # Next recursive call, also set nonz # to 1 if current digit is non zero ans += count(pos + 1, (10 * rem + dig) % m, currTight, num) dp[pos][rem][tight] = ans return ans # Function to convert x into its digit # vector and uses count() function to # return the required count def solve(x): global dp num = [] while x > 0: num.append(x % 10) x = x // 10 num.reverse() # Initialize dp with -1 dp = [[[-1, -1] for x in range(M)] for y in range(M)] return count(0, 0, 0, num) # Driver Code if __name__ == "__main__": L, R = 10, 99 # d is required digit and number # should be divisible by m d, m = 8, 2 M = 20 # states - position, rem, tight dp = [] print(solve(R) - solve(L)) # This code is contributed # by Rituraj Jain
C#
// C# Program to find the count of // numbers in a range divisible by m // having digit d at even positions using System; using System.Collections.Generic; class GFG { static int M = 20; // states - position, rem, tight static int[,,] dp = new int[M, M, 2]; // d is required digit and number should // be divisible by m static int d, m; // This function returns the count of // required numbers from 0 to num static int count(int pos, int rem, int tight, List<int> num) { // Last position if (pos == num.Count) { if (rem == 0) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos, rem, tight] != -1) return dp[pos, rem, tight]; // If the current position is even, place // digit d, but since we have considered // 0-indexing, check for odd positions if (pos % 2 == 1) { if (tight == 0 && d > num[pos]) return 0; int currTight = tight; // At this position, number becomes // smaller if (d < num[pos]) currTight = 1; int res = count(pos + 1, (10 * rem + d) % m, currTight, num); return dp[pos, rem, tight] = res; } int ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] int limit = (tight != 0) ? 9 : num[pos]; for (int dig = 0; dig <= limit; dig++) { if (dig == d) continue; int currTight = tight; // At this position, number becomes // smaller if (dig < num[pos]) currTight = 1; // Next recursive call, also set nonz // to 1 if current digit is non zero ans += count(pos + 1, (10 * rem + dig) % m, currTight, num); } return dp[pos, rem, tight] = ans; } // Function to convert x into its digit vector // and uses count() function to return the // required count static int solve(int x) { List<int> num = new List<int>(); while (x > 0) { num.Add(x % 10); x /= 10; } num.Reverse(); // Initialize dp for (int i = 0; i < dp.GetLength(0); i++) for (int j = 0; j < dp.GetLength(1); j++) for (int k = 0; k < dp.GetLength(2); k++) dp[i, j, k] = -1; return count(0, 0, 0, num); } // Driver Code public static void Main(String[] args) { int L = 10, R = 99; d = 8; m = 2; Console.WriteLine(solve(R) - solve(L)); } } // This code is contributed by Rajput-Ji
PHP
<?php // PHP Program to find the count of // numbers in a range divisible by m // having digit d at even positions // This function returns the count of // required numbers from 0 to num function count_num($pos, $rem, $tight, $num) { // Last position if ($pos == sizeof($num)) { if ($rem == 0) return 1; return 0; } // If this result is already computed // simply return it if ( $GLOBALS['dp'][$pos][$rem][$tight] != -1) return $GLOBALS['dp'][$pos][$rem][$tight]; // If the current position is even, place // digit d, but since we have considered // 0-indexing, check for odd positions if ($pos % 2) { if ($tight == 0 && $GLOBALS['d'] > $num[$pos]) return 0; $currTight = $tight; // At this position, number becomes // smaller if ($GLOBALS['d'] < $num[$pos]) $currTight = 1; $res = count_num($pos + 1, (10 * $rem + $GLOBALS['d']) % $GLOBALS['m'], $currTight, $num); return $dp[$pos][$rem][$tight] = $res; } $ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] $limit = ($tight ? 9 : $num[$pos]); for ($dig = 0; $dig <= $limit; $dig++) { if ($dig == $GLOBALS['d']) continue; $currTight = $tight; // At this position, number becomes // smaller if ($dig < $num[$pos]) $currTight = 1; // Next recursive call, also set nonz // to 1 if current digit is non zero $ans += count_num($pos + 1, (10 * $rem + $dig) % $GLOBALS['m'], $currTight, $num); } return $dp[$pos][$rem][$tight] = $ans; } // Function to convert x into its digit // vector and uses count() function to // return the required count function solve($x) { $num = array() ; while ($x) { array_push($num, $x % 10); $x = floor($x / 10); } $num = array_reverse($num) ; // Initialize dp for($i = 0 ; $i < $GLOBALS['M'] ; $i++) for($j = 0; $j < $GLOBALS['M']; $j++) for($k = 0; $k < 2; $k ++) $GLOBALS['dp'][$i][$j][$k] = -1; return count_num(0, 0, 0, $num); } // Driver Code $GLOBALS['M'] = 20; // states - position, rem, tight $GLOBALS['dp'] = array(array(array())); $L = 10; $R = 99; // d is required digit and number // should be divisible by m $GLOBALS['d'] = 8 ; $GLOBALS['m'] = 2; echo solve($R) - solve($L) ; // This code is contributed by Ryuga ?>
Javascript
<script> // JavaScript Program to find the count of // numbers in a range divisible by m // having digit d at even positions var M = 20; // states - position, rem, tight var dp = Array.from(Array(M), ()=> Array(M)) // d is required digit and number should // be divisible by m var d, m; // This function returns the count of // required numbers from 0 to num function count(pos, rem, tight, num) { // Last position if (pos == num.length) { if (rem == 0) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos][rem][tight] != -1) return dp[pos][rem][tight]; // If the current position is even, place // digit d, but since we have considered // 0-indexing, check for odd positions if (pos % 2) { if (tight == 0 && d > num[pos]) return 0; var currTight = tight; // At this position, number becomes // smaller if (d < num[pos]) currTight = 1; var res = count(pos + 1, (10 * rem + d) % m, currTight, num); return dp[pos][rem][tight] = res; } var ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] var limit = (tight ? 9 : num[pos]); for (var dig = 0; dig <= limit; dig++) { if (dig == d) continue; var currTight = tight; // At this position, number becomes // smaller if (dig < num[pos]) currTight = 1; // Next recursive call, also set nonz // to 1 if current digit is non zero ans += count(pos + 1, (10 * rem + dig) % m, currTight, num); } return dp[pos][rem][tight] = ans; } // Function to convert x into its digit vector // and uses count() function to return the // required count function solve(x) { var num = []; while (x) { num.push(x % 10); x = parseInt(x/10); } num.reverse(); for(var i =0; i<M; i++) for(var j =0; j<M; j++) dp[i][j] = new Array(2).fill(-1); return count(0, 0, 0, num); } // Driver Code to test above functions var L = 10, R = 99; d = 8, m = 2; document.write( solve(R) - solve(L)); </script>
Producción:
8
Complejidad del Tiempo: O(18 * (m – 1) * 2), si estamos tratando con los números hasta 10 18
Espacio Auxiliar: O(m 2 )
Publicación traducida automáticamente
Artículo escrito por Nishant Tanwar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA