Dados dos enteros x e y y donde x es divisible por y . Se puede representar en forma de fracción x/y . La tarea es reducir la fracción a su forma más baja.
Ejemplos:
Input : x = 16, y = 10 Output : x = 8, y = 5 Input : x = 10, y = 8 Output : x = 5, y = 4
Enfoque: Ambos valores x e y serán divisibles por su máximo común divisor. Entonces, si dividimos x e y del mcd (x, y), entonces x e y se pueden reducir a su forma más simple.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to reduce a fraction x/y // to its lowest form #include <bits/stdc++.h> using namespace std; // Function to reduce a fraction to its lowest form void reduceFraction(int x, int y) { int d; d = __gcd(x, y); x = x / d; y = y / d; cout << "x = " << x << ", y = " << y << endl; } // Driver Code int main() { int x = 16; int y = 10; reduceFraction(x, y); return 0; }
Java
// Java program to reduce a fraction x/y // to its lowest form class GFG { // Function to reduce a fraction to its lowest form static void reduceFraction(int x, int y) { int d; d = __gcd(x, y); x = x / d; y = y / d; System.out.println("x = " + x + ", y = " + y); } static int __gcd(int a, int b) { if (b == 0) return a; return __gcd(b, a % b); } // Driver Code public static void main(String[] args) { int x = 16; int y = 10; reduceFraction(x, y); } } /* This code contributed by PrinciRaj1992 */
Python3
# Python3 program to reduce a fraction x/y # to its lowest form from math import gcd # Function to reduce a fraction # to its lowest form def reduceFraction(x, y) : d = gcd(x, y); x = x // d; y = y // d; print("x =", x, ", y =", y); # Driver Code if __name__ == "__main__" : x = 16; y = 10; reduceFraction(x, y); # This code is contributed by Ryuga
C#
// C# program to reduce a fraction x/y // to its lowest form using System; class GFG { // Function to reduce a fraction to its lowest form static void reduceFraction(int x, int y) { int d; d = __gcd(x, y); x = x / d; y = y / d; Console.WriteLine("x = " + x + ", y = " + y); } static int __gcd(int a, int b) { if (b == 0) return a; return __gcd(b, a % b); } // Driver Code public static void Main(String[] args) { int x = 16; int y = 10; reduceFraction(x, y); } } // This code has been contributed by 29AjayKumar
PHP
<?php // PHP program to reduce a fraction x/y // to its lowest form // Function to reduce a fraction to its lowest form function reduceFraction($x, $y) { $d; $d = __gcd($x, $y); $x = $x / $d; $y = $y / $d; echo("x = " . $x . ", y = " . $y); } function __gcd($a, $b) { if ($b == 0) return $a; return __gcd($b, $a % $b); } // Driver Code $x = 16; $y = 10; reduceFraction($x, $y); // This code is contributed by Rajput-Ji ?>
Javascript
<script> // Javascript program to reduce a fraction x/y // to its lowest form // Function to reduce a fraction to its lowest form function reduceFraction(x, y) { let d; d = __gcd(x, y); x = parseInt(x / d); y = parseInt(y / d); document.write("x = " + x + ", y = " + y); } function __gcd(a, b) { if (b == 0) return a; return __gcd(b, a % b); } // Driver Code let x = 16; let y = 10; reduceFraction(x, y); </script>
Salida :
x = 8, y = 5
Complejidad del tiempo: O(log(max(x,y)))
Espacio auxiliar: O(log(max(x,y)))
Publicación traducida automáticamente
Artículo escrito por SURENDRA_GANGWAR y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA