Dado un gráfico acíclico dirigido ponderado y un vértice fuente en el gráfico, encuentre las rutas más cortas desde la fuente dada a todos los demás vértices.
Para un gráfico ponderado general, podemos calcular las distancias más cortas de una sola fuente en tiempo O (VE) utilizando el algoritmo Bellman-Ford . Para un gráfico sin pesos negativos, podemos hacerlo mejor y calcular las distancias más cortas de fuente única en tiempo O(E + VLogV) usando el algoritmo de Dijkstra . ¿Podemos hacerlo aún mejor para el gráfico acíclico dirigido (DAG)? Podemos calcular las distancias más cortas de una sola fuente en tiempo O(V+E) para los DAG. La idea es utilizar Clasificación topológica .
Inicializamos las distancias a todos los vértices como infinito y la distancia a la fuente como 0, luego encontramos una clasificación topológica del gráfico. La clasificación topológica de un gráfico representa una ordenación lineal del gráfico (consulte a continuación, la figura (b) es una representación lineal de la figura (a)). Una vez que tenemos el orden topológico (o representación lineal), procesamos uno por uno todos los vértices en orden topológico. Para cada vértice que se procesa, actualizamos las distancias de sus adyacentes usando la distancia del vértice actual.
La siguiente figura está tomada de esta fuente. Muestra el proceso paso a paso para encontrar los caminos más cortos.
El siguiente es un algoritmo completo para encontrar las distancias más cortas.
- Inicialice dist[] = {INF, INF, ….} y dist[s] = 0 donde s es el vértice de origen.
- Crea un orden topológico de todos los vértices.
- Haz lo siguiente para cada vértice u en orden topológico.
………..Haga lo siguiente para cada vértice adyacente v de u
………………si (dist[v] > dist[u] + peso(u, v))
………………………dist[ v] = dist[u] + peso(u, v)
Implementación:
C++
// C++ program to find single source shortest // paths for Directed Acyclic Graphs #include<iostream> #include <bits/stdc++.h> #define INF INT_MAX using namespace std; // Graph is represented using adjacency list. Every node // of adjacency list contains vertex number of the vertex // to which edge connects. It also // contains weight of the edge class AdjListNode { int v; int weight; public: AdjListNode(int _v, int _w) { v = _v; weight = _w;} int getV() { return v; } int getWeight() { return weight; } }; // Class to represent a graph using adjacency // list representation class Graph { int V; // No. of vertices' // Pointer to an array containing adjacency lists list<AdjListNode> *adj; // A function used by shortestPath void topologicalSortUtil(int v, bool visited[], stack<int> &Stack); public: Graph(int V); // Constructor // function to add an edge to graph void addEdge(int u, int v, int weight); // Finds shortest paths from given source vertex void shortestPath(int s); }; Graph::Graph(int V) { this->V = V; adj = new list<AdjListNode>[V]; } void Graph::addEdge(int u, int v, int weight) { AdjListNode node(v, weight); adj[u].push_back(node); // Add v to u's list } // A recursive function used by shortestPath. // See below link for details // https://www.geeksforgeeks.org/topological-sorting/ void Graph::topologicalSortUtil(int v, bool visited[], stack<int> &Stack) { // Mark the current node as visited visited[v] = true; // Recur for all the vertices adjacent to this vertex list<AdjListNode>::iterator i; for (i = adj[v].begin(); i != adj[v].end(); ++i) { AdjListNode node = *i; if (!visited[node.getV()]) topologicalSortUtil(node.getV(), visited, Stack); } // Push current vertex to stack which stores topological sort Stack.push(v); } // The function to find shortest paths from given vertex. // It uses recursive topologicalSortUtil() to get topological // sorting of given graph. void Graph::shortestPath(int s) { stack<int> Stack; int dist[V]; // Mark all the vertices as not visited bool *visited = new bool[V]; for (int i = 0; i < V; i++) visited[i] = false; // Call the recursive helper function to store // Topological Sort starting from all vertices // one by one for (int i = 0; i < V; i++) if (visited[i] == false) topologicalSortUtil(i, visited, Stack); // Initialize distances to all vertices as // infinite and distance to source as 0 for (int i = 0; i < V; i++) dist[i] = INF; dist[s] = 0; // Process vertices in topological order while (Stack.empty() == false) { // Get the next vertex from topological order int u = Stack.top(); Stack.pop(); // Update distances of all adjacent vertices list<AdjListNode>::iterator i; if (dist[u] != INF) { for (i = adj[u].begin(); i != adj[u].end(); ++i) if (dist[i->getV()] > dist[u] + i->getWeight()) dist[i->getV()] = dist[u] + i->getWeight(); } } // Print the calculated shortest distances for (int i = 0; i < V; i++) (dist[i] == INF)? cout << "INF ": cout << dist[i] << " "; } // Driver program to test above functions int main() { // Create a graph given in the above diagram. // Here vertex numbers are 0, 1, 2, 3, 4, 5 with // following mappings: 0=r, 1=s, 2=t, 3=x, 4=y, 5=z Graph g(6); g.addEdge(0, 1, 5); g.addEdge(0, 2, 3); g.addEdge(1, 3, 6); g.addEdge(1, 2, 2); g.addEdge(2, 4, 4); g.addEdge(2, 5, 2); g.addEdge(2, 3, 7); g.addEdge(3, 4, -1); g.addEdge(4, 5, -2); int s = 1; cout << "Following are shortest distances from source " << s <<" n"; g.shortestPath(s); return 0; }
Java
// Java program to find single source shortest paths in Directed Acyclic Graphs import java.io.*; import java.util.*; class ShortestPath { static final int INF=Integer.MAX_VALUE; class AdjListNode { private int v; private int weight; AdjListNode(int _v, int _w) { v = _v; weight = _w; } int getV() { return v; } int getWeight() { return weight; } } // Class to represent graph as an adjacency list of // nodes of type AdjListNode class Graph { private int V; private LinkedList<AdjListNode>adj[]; Graph(int v) { V=v; adj = new LinkedList[V]; for (int i=0; i<v; ++i) adj[i] = new LinkedList<AdjListNode>(); } void addEdge(int u, int v, int weight) { AdjListNode node = new AdjListNode(v,weight); adj[u].add(node);// Add v to u's list } // A recursive function used by shortestPath. // See below link for details void topologicalSortUtil(int v, Boolean visited[], Stack stack) { // Mark the current node as visited. visited[v] = true; Integer i; // Recur for all the vertices adjacent to this vertex Iterator<AdjListNode> it = adj[v].iterator(); while (it.hasNext()) { AdjListNode node =it.next(); if (!visited[node.getV()]) topologicalSortUtil(node.getV(), visited, stack); } // Push current vertex to stack which stores result stack.push(new Integer(v)); } // The function to find shortest paths from given vertex. It // uses recursive topologicalSortUtil() to get topological // sorting of given graph. void shortestPath(int s) { Stack stack = new Stack(); int dist[] = new int[V]; // Mark all the vertices as not visited Boolean visited[] = new Boolean[V]; for (int i = 0; i < V; i++) visited[i] = false; // Call the recursive helper function to store Topological // Sort starting from all vertices one by one for (int i = 0; i < V; i++) if (visited[i] == false) topologicalSortUtil(i, visited, stack); // Initialize distances to all vertices as infinite and // distance to source as 0 for (int i = 0; i < V; i++) dist[i] = INF; dist[s] = 0; // Process vertices in topological order while (stack.empty() == false) { // Get the next vertex from topological order int u = (int)stack.pop(); // Update distances of all adjacent vertices Iterator<AdjListNode> it; if (dist[u] != INF) { it = adj[u].iterator(); while (it.hasNext()) { AdjListNode i= it.next(); if (dist[i.getV()] > dist[u] + i.getWeight()) dist[i.getV()] = dist[u] + i.getWeight(); } } } // Print the calculated shortest distances for (int i = 0; i < V; i++) { if (dist[i] == INF) System.out.print( "INF "); else System.out.print( dist[i] + " "); } } } // Method to create a new graph instance through an object // of ShortestPath class. Graph newGraph(int number) { return new Graph(number); } public static void main(String args[]) { // Create a graph given in the above diagram. Here vertex // numbers are 0, 1, 2, 3, 4, 5 with following mappings: // 0=r, 1=s, 2=t, 3=x, 4=y, 5=z ShortestPath t = new ShortestPath(); Graph g = t.newGraph(6); g.addEdge(0, 1, 5); g.addEdge(0, 2, 3); g.addEdge(1, 3, 6); g.addEdge(1, 2, 2); g.addEdge(2, 4, 4); g.addEdge(2, 5, 2); g.addEdge(2, 3, 7); g.addEdge(3, 4, -1); g.addEdge(4, 5, -2); int s = 1; System.out.println("Following are shortest distances "+ "from source " + s ); g.shortestPath(s); } } //This code is contributed by Aakash Hasija
Python3
# Python program to find single source shortest paths # for Directed Acyclic Graphs Complexity :O(V+E) from collections import defaultdict # Graph is represented using adjacency list. Every # node of adjacency list contains vertex number of # the vertex to which edge connects. It also contains # weight of the edge class Graph: def __init__(self,vertices): self.V = vertices # No. of vertices # dictionary containing adjacency List self.graph = defaultdict(list) # function to add an edge to graph def addEdge(self,u,v,w): self.graph[u].append((v,w)) # A recursive function used by shortestPath def topologicalSortUtil(self,v,visited,stack): # Mark the current node as visited. visited[v] = True # Recur for all the vertices adjacent to this vertex if v in self.graph.keys(): for node,weight in self.graph[v]: if visited[node] == False: self.topologicalSortUtil(node,visited,stack) # Push current vertex to stack which stores topological sort stack.append(v) ''' The function to find shortest paths from given vertex. It uses recursive topologicalSortUtil() to get topological sorting of given graph.''' def shortestPath(self, s): # Mark all the vertices as not visited visited = [False]*self.V stack =[] # Call the recursive helper function to store Topological # Sort starting from source vertices for i in range(self.V): if visited[i] == False: self.topologicalSortUtil(s,visited,stack) # Initialize distances to all vertices as infinite and # distance to source as 0 dist = [float("Inf")] * (self.V) dist[s] = 0 # Process vertices in topological order while stack: # Get the next vertex from topological order i = stack.pop() # Update distances of all adjacent vertices for node,weight in self.graph[i]: if dist[node] > dist[i] + weight: dist[node] = dist[i] + weight # Print the calculated shortest distances for i in range(self.V): print (("%d" %dist[i]) if dist[i] != float("Inf") else "Inf" ,end=" ") g = Graph(6) g.addEdge(0, 1, 5) g.addEdge(0, 2, 3) g.addEdge(1, 3, 6) g.addEdge(1, 2, 2) g.addEdge(2, 4, 4) g.addEdge(2, 5, 2) g.addEdge(2, 3, 7) g.addEdge(3, 4, -1) g.addEdge(4, 5, -2) # source = 1 s = 1 print ("Following are shortest distances from source %d " % s) g.shortestPath(s) # This code is contributed by Neelam Yadav
C#
// C# program to find single source shortest // paths in Directed Acyclic Graphs using System; using System.Collections.Generic; public class ShortestPath { static readonly int INF = int.MaxValue; class AdjListNode { public int v; public int weight; public AdjListNode(int _v, int _w) { v = _v; weight = _w; } public int getV() { return v; } public int getWeight() { return weight; } } // Class to represent graph as an adjacency list of // nodes of type AdjListNode class Graph { public int V; public List<AdjListNode>[]adj; public Graph(int v) { V = v; adj = new List<AdjListNode>[V]; for (int i = 0; i < v; ++i) adj[i] = new List<AdjListNode>(); } public void addEdge(int u, int v, int weight) { AdjListNode node = new AdjListNode(v,weight); adj[u].Add(node);// Add v to u's list } // A recursive function used by shortestPath. // See below link for details public void topologicalSortUtil(int v, Boolean []visited, Stack<int> stack) { // Mark the current node as visited. visited[v] = true; // Recur for all the vertices adjacent to this vertex foreach(AdjListNode it in adj[v]) { AdjListNode node = it; if (!visited[node.getV()]) topologicalSortUtil(node.getV(), visited, stack); } // Push current vertex to stack which stores result stack.Push(v); } // The function to find shortest paths from given vertex. It // uses recursive topologicalSortUtil() to get topological // sorting of given graph. public void shortestPath(int s) { Stack<int> stack = new Stack<int>(); int []dist = new int[V]; // Mark all the vertices as not visited Boolean []visited = new Boolean[V]; for (int i = 0; i < V; i++) visited[i] = false; // Call the recursive helper function to store Topological // Sort starting from all vertices one by one for (int i = 0; i < V; i++) if (visited[i] == false) topologicalSortUtil(i, visited, stack); // Initialize distances to all vertices as infinite and // distance to source as 0 for (int i = 0; i < V; i++) dist[i] = INF; dist[s] = 0; // Process vertices in topological order while (stack.Count != 0) { // Get the next vertex from topological order int u = (int)stack.Pop(); // Update distances of all adjacent vertices if (dist[u] != INF) { foreach(AdjListNode it in adj[u]) { AdjListNode i= it; if (dist[i.getV()] > dist[u] + i.getWeight()) dist[i.getV()] = dist[u] + i.getWeight(); } } } // Print the calculated shortest distances for (int i = 0; i < V; i++) { if (dist[i] == INF) Console.Write( "INF "); else Console.Write( dist[i] + " "); } } } // Method to create a new graph instance through an object // of ShortestPath class. Graph newGraph(int number) { return new Graph(number); } // Driver code public static void Main(String []args) { // Create a graph given in the above diagram. Here vertex // numbers are 0, 1, 2, 3, 4, 5 with following mappings: // 0=r, 1=s, 2=t, 3=x, 4=y, 5=z ShortestPath t = new ShortestPath(); Graph g = t.newGraph(6); g.addEdge(0, 1, 5); g.addEdge(0, 2, 3); g.addEdge(1, 3, 6); g.addEdge(1, 2, 2); g.addEdge(2, 4, 4); g.addEdge(2, 5, 2); g.addEdge(2, 3, 7); g.addEdge(3, 4, -1); g.addEdge(4, 5, -2); int s = 1; Console.WriteLine("Following are shortest distances "+ "from source " + s ); g.shortestPath(s); } } // This code is contributed by Rajput-Ji
Following are shortest distances from source 1 nINF 0 2 6 5 3
Complejidad de tiempo: la complejidad de tiempo de la clasificación topológica es O (V + E). Después de encontrar el orden topológico, el algoritmo procesa todos los vértices y, para cada vértice, ejecuta un bucle para todos los vértices adyacentes. El total de vértices adyacentes en un gráfico es O(E). Entonces, el bucle interno se ejecuta O (V + E) veces. Por lo tanto, la complejidad temporal total de este algoritmo es O(V+E).
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA