Subarreglo de suma máxima de tamaño K con suma menor que X

Dado un arreglo arr[] y dos enteros K y X , la tarea es encontrar la suma máxima entre todos los subarreglos de tamaño K con la suma menor que X .

Ejemplos:

Entrada: arr[] = {20, 2, 3, 10, 5}, K = 3, X = 20
Salida: 18
Explicación: el subarreglo de tamaño 3 que tiene una suma máxima menor que 20 es {3, 10, 5}. Por lo tanto, la salida requerida es 18.

Entrada: arr[] = {-5, 8, 7, 2, 10, 1, 20, -4, 6, 9}, K = 5, X = 30 Salida: 29 Explicación: Subarreglo de tamaño 5 con
suma máxima
menor que 30 es {2, 10, 1, 20, -4}. Por lo tanto, la salida requerida es 29.

Enfoque ingenuo: el enfoque más simple para resolver el problema es generar todos los subarreglos de tamaño K y verificar si su suma es menor que X o no. Imprime la suma máxima obtenida entre todos esos subarreglos.

Complejidad temporal: O(N * K)
Espacio auxiliar: O(1)

Enfoque eficiente: siga los pasos a continuación para resolver el problema utilizando la técnica de ventana deslizante :

  1. Inicialice una variable sum_K para almacenar la suma de los primeros elementos de la array K.
  2. Si sum_K es menor que X , entonces inicialice Max_Sum con sum_K .
  3. Atraviese la array desde (K + 1) el índice y realice lo siguiente: 
    1. En cada iteración, reste el primer elemento del subarreglo de longitud K anterior y agregue el elemento actual a sum_K .
    2. Si sum_K es menor que X , compare sum_K con Max_Sum y actualice Max_Sum en consecuencia.
  4. Finalmente, imprima Max_Sum .

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate maximum sum
// among all subarrays of size K
// with the sum less than X
void maxSumSubarr(int A[], int N,
                  int K, int X)
{
 
    // Initialize sum_K to 0
    int sum_K = 0;
 
    // Calculate sum of first K elements
    for (int i = 0; i < K; i++) {
 
        sum_K += A[i];
    }
 
    int Max_Sum = 0;
 
    // If sum_K is less than X
    if (sum_K < X) {
 
        // Initialize MaxSum with sum_K
        Max_Sum = sum_K;
    }
 
    // Iterate over the array from
    // (K + 1)-th index
    for (int i = K; i < N; i++) {
 
        // Subtract the first element
        // from the previous K elements
        // and add the next element
        sum_K -= (A[i - K] - A[i]);
 
        // If sum_K is less than X
        if (sum_K < X) {
 
            // Update the Max_Sum
            Max_Sum = max(Max_Sum, sum_K);
        }
    }
 
    cout << Max_Sum << endl;
}
 
// Driver Code
int main()
{
    int arr[] = { -5, 8, 7, 2, 10,
                  1, 20, -4, 6, 9 };
    int K = 5;
    int X = 30;
 
    // Size of Array
    int N = sizeof(arr)
            / sizeof(arr[0]);
 
    // Function Call
    maxSumSubarr(arr, N, K, X);
 
    return 0;
}

Java

// Java program for the above approach
import java.io.*;
 
class GFG{
     
// Function to calculate maximum sum
// among all subarrays of size K
// with the sum less than X
private static void maxSumSubarr(int A[], int N,
                                 int K, int X)
{
     
    // Initialize sum_K to 0
    int sum_K = 0;
     
    // Calculate sum of first K elements
    for(int i = 0; i < K; i++)
    {
        sum_K += A[i];
    }
     
    int Max_Sum = 0;
     
    // If sum_K is less than X
    if (sum_K < X)
    {
         
        // Initialize MaxSum with sum_K
        Max_Sum = sum_K;
    }
     
    // Iterate over the array from
    // (K + 1)-th index
    for(int i = K; i < N; i++)
    {
         
        // Subtract the first element
        // from the previous K elements
        // and add the next element
        sum_K -= (A[i - K] - A[i]);
         
        // If sum_K is less than X
        if (sum_K < X)
        {
             
            // Update the Max_Sum
            Max_Sum = Math.max(Max_Sum, sum_K);
        }
    }
     
    System.out.println(Max_Sum);
}
  
// Driver Code
public static void main (String[] args)
{
    int arr[] = { -5, 8, 7, 2, 10,
                  1, 20, -4, 6, 9 };
    int K = 5;
    int X = 30;
     
    // Size of Array
    int N = arr.length;
     
    // Function Call
    maxSumSubarr(arr, N, K, X);
}
}
 
// This code is contributed by jithin

Python3

# Python3 program for the above approach
  
# Function to calculate maximum sum
# among all subarrays of size K
# with the sum less than X
def maxSumSubarr(A, N, K, X):
     
    # Initialize sum_K to 0
    sum_K = 0
  
    # Calculate sum of first K elements
    for i in range(0, K):
        sum_K += A[i]
     
    Max_Sum = 0
  
    # If sum_K is less than X
    if (sum_K < X):
  
        # Initialize MaxSum with sum_K
        Max_Sum = sum_K
     
    # Iterate over the array from
    # (K + 1)-th index
    for i in range(K, N):
  
        # Subtract the first element
        # from the previous K elements
        # and add the next element
        sum_K -= (A[i - K] - A[i])
  
        # If sum_K is less than X
        if (sum_K < X):
             
            # Update the Max_Sum
            Max_Sum = max(Max_Sum, sum_K)
         
    print(Max_Sum)
 
# Driver Code
arr = [ -5, 8, 7, 2, 10,
         1, 20, -4, 6, 9 ]
K = 5
X = 30
  
# Size of Array
N = len(arr)
  
# Function Call
maxSumSubarr(arr, N, K, X)
 
# This code is contributed by sanjoy_62

C#

// C# program for the above approach
using System;
 
class GFG{
     
// Function to calculate maximum sum
// among all subarrays of size K
// with the sum less than X
private static void maxSumSubarr(int []A, int N,
                                 int K, int X)
{
     
    // Initialize sum_K to 0
    int sum_K = 0;
     
    // Calculate sum of first K elements
    for(int i = 0; i < K; i++)
    {
        sum_K += A[i];
    }
     
    int Max_Sum = 0;
     
    // If sum_K is less than X
    if (sum_K < X)
    {
         
        // Initialize MaxSum with sum_K
        Max_Sum = sum_K;
    }
     
    // Iterate over the array from
    // (K + 1)-th index
    for(int i = K; i < N; i++)
    {
         
        // Subtract the first element
        // from the previous K elements
        // and add the next element
        sum_K -= (A[i - K] - A[i]);
         
        // If sum_K is less than X
        if (sum_K < X)
        {
             
            // Update the Max_Sum
            Max_Sum = Math.Max(Max_Sum, sum_K);
        }
    }
    Console.WriteLine(Max_Sum);
}
  
// Driver Code
public static void Main(String[] args)
{
    int []arr = { -5, 8, 7, 2, 10,
                   1, 20, -4, 6, 9 };
    int K = 5;
    int X = 30;
     
    // Size of Array
    int N = arr.Length;
     
    // Function Call
    maxSumSubarr(arr, N, K, X);
}
}
 
// This code is contributed by Amit Katiyar

Javascript

<script>
 
// JavaScript program to implement the above approach
 
// Function to calculate maximum sum
// among all subarrays of size K
// with the sum less than X
function maxSumSubarr(A, N, K, X)
{
 
    // Initialize sum_K to 0
    let sum_K = 0;
 
    // Calculate sum of first K elements
    for (let i = 0; i < K; i++) {
 
        sum_K += A[i];
    }
 
    let Max_Sum = 0;
 
    // If sum_K is less than X
    if (sum_K < X) {
 
        // Initialize MaxSum with sum_K
        Max_Sum = sum_K;
    }
 
    // Iterate over the array from
    // (K + 1)-th index
    for (let i = K; i < N; i++) {
 
        // Subtract the first element
        // from the previous K elements
        // and add the next element
        sum_K -= (A[i - K] - A[i]);
 
        // If sum_K is less than X
        if (sum_K < X) {
 
            // Update the Max_Sum
            Max_Sum = Math.max(Max_Sum, sum_K);
        }
    }
    document.write(Max_Sum);
}
 
// Driver Code
 
    let arr = [ -5, 8, 7, 2, 10,
                  1, 20, -4, 6, 9 ];
    let K = 5;
    let X = 30;
 
    // Size of Array
    let N = arr.length;
 
    // Function Call
    maxSumSubarr(arr, N, K, X);
     
    // This code is contributed by susmitakundugoaldanga.
</script>
Producción: 

29

 

Complejidad temporal: O(N)
Espacio auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por supratik_mitra y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *