Dado un entero positivo n, encuentre la suma de la serie hasta n términos.
Ejemplos:
Input : n = 4 Output : 3.91667 Series : (1 / 1) + (1 + 2) / (1 * 2) + (1 + 2 + 3) / (1 * 2 * 3) + (1 + 2 + 3 + 4) / (1 * 2 * 3 * 4) = 1 / 1 + 3 / 2 + 6 / 6 + 10 / 24 = 3.91667 Input : n = 6 Output : 4.07083 Series : (1 / 1) + (1 + 2) / (1 * 2) + (1 + 2 + 3) / (1 * 2 * 3) + (1 + 2 + 3 + 4) / (1 * 2 * 3 * 4) + (1 + 2 + 3 + 4 + 5) / (1 * 2 * 3 * 4 * 5) + (1 + 2 + 3 + 4 + 5 + 6) / (1 * 2 * 3 * 4 * 5 * 6) = 1 / 1 + 3 / 2 + 6 / 6 + 10 / 24 + 15 / 120 + 21 / 720 = 4.07083
C++
// CPP program to find sum of series. #include <bits/stdc++.h> using namespace std; double sumOfSeries(int n) { double res = 0.0 ; int sum = 0, prod = 1; for (int i = 1 ; i <= n ; i++) { sum += i; prod *= i; res += ((double)sum / prod); } return res; } // Driver Code int main() { int n = 4 ; cout << sumOfSeries(n) ; return 0; }
Java
// Java program to find sum of series. class GFG { static double sumOfSeries(int n) { double res = 0.0; int sum = 0, prod = 1; for (int i = 1; i <= n; i++) { sum += i; prod *= i; res += ((double)sum / prod); } return res; } // Driver code public static void main(String arg[]) { int n = 4; System.out.println(sumOfSeries(n)); } } // This code is contributed by Anant Agarwal.
Python3
# Python program to # find sum of series. def sumOfSeries(n) : res = 0.0 sum = 0 prod = 1 for i in range(1, n + 1) : sum = sum + i prod = prod * i res = res + (sum / prod) return res # Driver Code n = 4 print (round(sumOfSeries(n), 5)) # This code is contributed by # Manish Shaw(manishshaw1)
C#
// C# program to find sum of series. using System; class GFG { static double sumOfSeries(int n) { double res = 0.0; int sum = 0, prod = 1; for (int i = 1; i <= n; i++) { sum += i; prod *= i; res += ((double)sum / prod); } return res; } // Driver code public static void Main() { int n = 4; Console.Write(sumOfSeries(n)); } } // This code is contributed by vt_m.
PHP
<?php // PHP program to find sum of series. function sumOfSeries($n) { $res = 0.0 ; $sum = 0; $prod = 1; for ($i = 1 ; $i <= $n ; $i++) { $sum += $i; $prod *= $i; $res += ((double)$sum / $prod); } return $res; } // Driver Code $n = 4 ; echo(sumOfSeries($n)) ; // This code is contributed by Ajit. ?>
Javascript
<script> // javascript program to find sum of series. function sumOfSeries(n) { let res = 0.0 ; let sum = 0, prod = 1; for (let i = 1 ; i <= n ; i++) { sum += i; prod *= i; res += (sum / prod); } return res; } // Driver Code let n = 4 ; document.write(sumOfSeries(n).toFixed(5)) ; // This code contributed by aashish1995 </script>
Producción :
3.91667
Complejidad de tiempo : O (n) desde que se usa un solo ciclo
Espacio auxiliar : O(1) para espacio constante para variables
Publicación traducida automáticamente
Artículo escrito por nikunj_agarwal y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA