Dada una array arr[] y un entero K , la tarea es encontrar la suma de todas las subsecuencias de longitud K de la array dada.
Ejemplo:
Entrada: arr[] = {2, 3, 4}, K = 2
Salida: 18
Explicación:
Hay 3 subsecuencias posibles de longitud 2 que son {2, 3}, {2, 4} y {3, 4}
La la suma de las 2 subsecuencias de longitud es 5 + 6 + 7 = 18Entrada: arr[] = {7, 8, 9, 2}, K = 2
Salida: 78
Explicación:
Hay 6 subsecuencias de longitud 2 que son {7, 8}, {7, 9}, {7, 2} , {8, 9}, {8, 2} y {9, 2}.
La suma de las 2 subsecuencias de longitud es 15 + 16 + 9 + 17 + 10 + 11 = 78
Enfoque:
Para resolver el problema mencionado anteriormente, debemos considerar todas las subsecuencias de longitud K que son «n elige k», es decir
- El recuento del elemento total en todas las subsecuencias de longitud K es , la posibilidad de aparición de cada elemento es la misma.
- Entonces cada elemento aparece veces y contribuye en el resultado.
- Por lo tanto, la suma de todas las subsecuencias de longitud K es
A continuación se muestra la implementación del enfoque mencionado anteriormente:
C++
// C++ implementation to find sum // of all subsequences of length K #include <bits/stdc++.h> using namespace std; int fact(int n); // Function to find nCr int nCr(int n, int r) { return fact(n) / (fact(r) * fact(n - r)); } // Function that returns // factorial of n int fact(int n) { int res = 1; for (int i = 2; i <= n; i++) res = res * i; return res; } // Function for finding sum // of all K length subsequences int sumSubsequences( int arr[], int n, int k) { int sum = 0; // Calculate the sum of array for (int i = 0; i < n; i++) { sum += arr[i]; } int kLengthSubSequence; // Calculate nCk kLengthSubSequence = nCr(n, k); int ans = sum * ((k * kLengthSubSequence) / n); // Return the final result return ans; } // Driver code int main() { int arr[] = { 7, 8, 9, 2 }; int K = 2; int n = sizeof(arr) / sizeof(arr[0]); cout << sumSubsequences(arr, n, K); return 0; }
Java
// Java implementation to find sum // of all subsequences of length K class GFG{ // Function to find nCr static int nCr(int n, int r) { return fact(n) / (fact(r) * fact(n - r)); } // Function that returns // factorial of n static int fact(int n) { int res = 1; for (int i = 2; i <= n; i++) res = res * i; return res; } // Function for finding sum // of all K length subsequences static int sumSubsequences(int arr[], int n, int k) { int sum = 0; // Calculate the sum of array for (int i = 0; i < n; i++) { sum += arr[i]; } int kLengthSubSequence; // Calculate nCk kLengthSubSequence = nCr(n, k); int ans = sum * ((k * kLengthSubSequence) / n); // Return the final result return ans; } // Driver code public static void main(String[] args) { int arr[] = { 7, 8, 9, 2 }; int K = 2; int n = arr.length; System.out.print(sumSubsequences(arr, n, K)); } } // This code contributed by Rajput-Ji
Python3
# Python3 implementation to find sum # of all subsequences of length K # Function to find nCr def nCr(n, r): return fact(n) / (fact(r) * fact(n - r)) # Function that returns # factorial of n def fact(n): res = 1 for i in range(2, n + 1): res = res * i return res # Function for finding sum # of all K length subsequences def sumSubsequences(arr, n, k): sum = 0 # Calculate the sum of array for i in range(0, n): sum = sum + arr[i] # Calculate nCk kLengthSubSequence = nCr(n, k) ans = sum * ((k * kLengthSubSequence) / n); # Return the final result return ans # Driver Code arr = [ 7, 8, 9, 2 ] k = 2 n = len(arr) print(sumSubsequences(arr, n, k)) # This code is contributed by skylags
C#
// C# implementation to find sum // of all subsequences of length K using System; class GFG{ // Function to find nCr static int nCr(int n, int r) { return fact(n) / (fact(r) * fact(n - r)); } // Function that returns // factorial of n static int fact(int n) { int res = 1; for(int i = 2; i <= n; i++) res = res * i; return res; } // Function for finding sum // of all K length subsequences static int sumSubsequences(int[] arr, int n, int k) { int sum = 0; // Calculate the sum of array for(int i = 0; i < n; i++) { sum += arr[i]; } int kLengthSubSequence; // Calculate nCk kLengthSubSequence = nCr(n, k); int ans = sum * ((k * kLengthSubSequence) / n); // Return the final result return ans; } // Driver code static void Main() { int[] arr = { 7, 8, 9, 2 }; int K = 2; int n = arr.Length; Console.Write(sumSubsequences(arr, n, K)); } } // This code is contributed by divyeshrabadiya07
Javascript
<script> // Javascript implementation to find sum // of all subsequences of length K // Function to find nCr function nCr(n, r) { return fact(n) / (fact(r) * fact(n - r)); } // Function that returns // factorial of n function fact(n) { var res = 1; for(var i = 2; i <= n; i++) res = res * i; return res; } // Function for finding sum // of all K length subsequences function sumSubsequences(arr, n, k) { var sum = 0; // Calculate the sum of array for(var i = 0; i < n; i++) { sum += arr[i]; } var kLengthSubSequence; // Calculate nCk kLengthSubSequence = nCr(n, k); var ans = sum * ((k * kLengthSubSequence) / n); // Return the final result return ans; } // Driver code var arr = [ 7, 8, 9, 2 ]; var K = 2; var n = arr.length; document.write(sumSubsequences(arr, n, K)); // This code is contributed by noob2000 </script>
78